首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Combined heat and power (CHP) plants fired by forest wood can significantly contribute to attaining the target of increasing the share of renewable energy production. However, the spatial distribution of biomass supply and of heat demand limits the potentials of CHP production. This article assesses CHP potentials using a mixed integer programming model that optimizes locations of bioenergy plants. Investment costs of district heating infrastructure are modeled as a function of heat demand densities, which can differ substantially. Gasification of biomass in a combined cycle process is assumed as production technology. Some model parameters have a broad range according to a literature review. Monte‐Carlo simulations have therefore been performed to account for model parameter uncertainty in our analysis. The model is applied to assess CHP potentials in Austria. Optimal locations of plants are clustered around big cities in the east of the country. At current power prices, biomass‐based CHP production allows producing around 3% of the total energy demand in Austria. Yet, the heat utilization decreases when CHP production increases due to limited heat demand that is suitable for district heating. Production potentials are most sensitive to biomass costs and power prices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Bagasse is selected as the biomass source that is studied because of its annual significant rate production in Iran and potential for energy generation. Bagasse has been as an energy source for the production of energy required to run the sugar factory. The energy needed by factories was supplied by burning bagasse directly inside furnaces, which had an exceptionally low output. To this end, today, a secondary use for this waste product is in combined heat and power plants where its use as a fuel source provides both heat and power. In addition, low efficiency of traditional methods was caused to increase the use of modern methods such as anaerobic digestion, gasification and pyrolysis for the production of bio‐fuels. In this paper, the energy conversion technologies are compared and ranked for the first time in Iran. Therefore, the most fundamental innovation of this research is the choice of the best energy conversion technology for the fuel production with a higher efficiency. To assess the feasibility application and economic benefit of biogas CHP plant, a design for a typical biogas unit is programmed. The results show the acceptable payback period; therefore, economically and technically, biogas CHP plant appears to be an attractive proposition in Iran. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This study aims to identify and evaluate the biomass utilization options and evaluate the sustainable biomass production for combined heat and power (CHP) in Turkey. The total biomass energy potential of Turkey is about 32 Mtoe. The amount of usable biomass potential of Turkey is approximately 17 Mtoe. Among the biomass energy sources, fuel wood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21%. The use of biofuels for CHP on a large scale is focused mainly on forest industry sites, where considerable quantities of biomass are available. Biomass available for energy can be converted to different types of final energy (e.g., electricity, heat), of these, the production of electricity appears to be particularly important. While CHP provides several environmental benefits by making use of waste heat and waste products, air pollution is a concern any time fossil fuels or biomass are burned.  相似文献   

4.
This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.  相似文献   

5.
Technological learning in bioenergy systems   总被引:1,自引:0,他引:1  
The main goal of this article is to determine whether cost reductions in different bioenergy systems can be quantified using the experience curve approach, and how specific issues (arising from the complexity of biomass energy systems) can be addressed. This is pursued by case studies on biofuelled combined heat and power (CHP) plants in Sweden, global development of fluidized bed boilers and Danish biogas plants. As secondary goal, the aim is to identify learning mechanisms behind technology development and cost reduction for the biomass energy systems investigated. The case studies reveal large difficulties to devise empirical experience curves for investment costs of biomass-fuelled power plants. To some extent, this is due to lack of (detailed) data. The main reason, however, are varying plant costs due to differences in scale, fuel type, plant layout, region etc. For fluidized bed boiler plants built on a global level, progress ratios (PRs) for the price of entire plants lies approximately between 90–93% (which is typical for large plant-like technologies). The costs for the boiler section alone was found to decline much faster. The experience curve approach delivers better results, when the production costs of the final energy carrier are analyzed. Electricity from biofuelled CHP-plants yields PRs of 91–92%, i.e. an 8–9% reduction of electricity production costs with each cumulative doubling of electricity production. The experience curve for biogas production displays a PR of 85% from 1984 to the beginning of 1990, and then levels to approximately 100% until 2002. For technologies developed on a local level (e.g. biogas plants), learning-by-using and learning-by-interacting are important learning mechanism, while for CHP plants utilizing fluidized bed boilers, upscaling is probably one of the main mechanisms behind cost reductions.  相似文献   

6.
In this paper, we assess the total cost of energy recovery from sewage sludge through anaerobic digestion with biogas utilization in combined heat and power (CHP) system. The important advantage of anaerobic digestion process is the production of biogas, which can be used to generate electricity and heat as a source of renewable energy. From this study, it can be retained that the generated thermal energy from the anaerobic digestion process meets the needs of the wastewater treatment plant (WWTP) and guarantees its self‐sufficiency in heat. The surplus of renewable heat produced by CHP is not a primary factor to improve the economic viability of the process. Moreover, the sales of electricity output represent about 76% of the operating costs of anaerobic digestion process. Renewable energy production is not economically viable by its own, without considering the wastewater treatment function and the associated incomes. Nevertheless, sludge digestion helps to reduce the wastewater treatment costs mainly by giving a good source of revenue via electricity production. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
《Biomass & bioenergy》2000,18(3):181-188
A comparison of economic data for different technologies and fuels is difficult due to the number of parameters that can alter the profitability of heat and power production. In addition, the variation of currency exchange rates considerably reduces the possibility of comparing plants in different countries. In the present study, a new method based on dimensionless costs is proposed to overcome these difficulties. Dimensionless capital costs C (including maintenance) and dimensionless fuel costs F are introduced by dividing the costs by the price for heat or electricity. In a diagram of C versus F the economy of different technologies can be compared. The diagram is divided into a profitable and an unprofitable area. The orientation of the data from one specific plant shows immediately whether the plant can be operated economically or not. Furthermore it can be seen by which factor either the fuel costs have to be reduced, or the price for electricity or heat has to be increased, or the capital and maintenance costs have to be reduced to reach the profitable area. The dimensionless diagram is independent from currency exchange rates. To demonstrate the application of the method, data from an economic assessment study of power production plants from biomass using pyrolysis, gasification and combustion technologies are presented.  相似文献   

8.
The effect of national energy policies on a local Swedish district heating (DH) system has been studied, regarding the profitability of new investments and the potential for climate change mitigation. The DH system has been optimised regarding three investments: biomass-fuelled CHP (bio CHP), natural gas-fuelled combined cycle CHP (NGCC CHP) and biomass-fuelled heat-only boiler (bio HOB) in two scenarios (with or without national taxes and policy instruments). In both scenarios EU’s tradable CO2 emission permits are included. Results from the study show that when national policies are included, the most cost-effective investment option is the bio CHP technology. However, when national taxes and policy instruments are excluded, the DH system containing the NGCC CHP plant has 30% lower system cost than the bio CHP system. Regardless of the scenario and when coal condensing is considered as marginal electricity production, the NGCC CHP has the largest global CO2 reduction potential, about 300 ktonne CO2. However, the CO2 reduction potential is highly dependent on the marginal electricity production. Demonstrated here is that national policies such as tradable green certificates can, when applied to DH systems, contribute to investments that will not fully utilise the DH systems’ potential for global CO2 emissions reductions.  相似文献   

9.
In this article, a new stand‐alone Cu‐Cl cycle system (SACuCl) for trigeneration of electricity, hydrogen, and oxygen using a combination of a specific combined heat and power (CHP) unit and a 2‐step Cu‐Cl cycle using a CuCl/HCl electrolyzer is presented. Based on the self‐heat recuperation technology for the CHP unit and the heat integration of the Cu‐Cl cycle unit, the power efficiency of the SACuCl for 5 prescribed scenarios (case studies) is predicted to achieve about 48% at least. The SACuCl uses the technologies of the dry reforming of methane and the oxy‐fuel combustion to achieve a relatively high CO2 concentration in the flue gas, and CO2 emissions for power generation could be almost restricted by 0.418 kg/kWh. From the aspect of the electricity required for hydrogen production, it is verified that the 2‐step Cu‐Cl cycle system is superior to the conventional water electrolyzer because the CHP process supplies the heat/electricity for Cu‐Cl thermochemical reactions and a thermoelectric generator is connected to the exhaust gas for recovering the power consumption from the compressor and the CuCl/HCl electrolyzer. Finally, the heat exchanger network and the pinch technology are employed to determine the optimum heat recovery of the Cu‐Cl cycle. In case 5 analyzed for the SACuCl, the electricity required for the heat‐integrated 2‐step Cu‐Cl cycle is predicted to dramatically decrease from 4.39 to 0.452 kWh/m3 H2 and the cycle energy efficiency could be obviously increased from 23.77 to 31.97%.  相似文献   

10.
Biomass gasification is considered a key technology in reaching targets for renewable energy and CO2 emissions reduction. This study evaluates policy instruments affecting the profitability of biomass gasification applications integrated in a Swedish district heating (DH) system for the medium-term future (around year 2025). Two polygeneration applications based on gasification technology are considered in this paper: (1) a biorefinery plant co-producing synthetic natural gas (SNG) and district heat; (2) a combined heat and power (CHP) plant using integrated gasification combined cycle technology. Using an optimisation model we identify the levels of policy support, here assumed to be in the form of tradable certificates, required to make biofuel production competitive to biomass based electricity generation under various energy market conditions. Similarly, the tradable green electricity certificate levels necessary to make gasification based electricity generation competitive to conventional steam cycle technology, are identified. The results show that in order for investment in the SNG biorefinery to be competitive to investment in electricity production in the DH system, biofuel certificates in the range of 24–42 EUR/MWh are needed. Electricity certificates are not a prerequisite for investment in gasification based CHP to be competitive to investment in conventional steam cycle CHP, given sufficiently high electricity prices. While the required biofuel policy support is relatively insensitive to variations in capital cost, the required electricity certificates show high sensitivity to variations in investment costs. It is concluded that the large capital commitment and strong dependency on policy instruments makes it necessary that DH suppliers believe in the long-sightedness of future support policies, in order for investments in large-scale biomass gasification in DH systems to be realised.  相似文献   

11.
An analysis of seven different technologies is presented. The technologies integrate fluctuating renewable energy sources (RES) such as wind power production into the electricity supply, and the Danish energy system is used as a case. Comprehensive hour-by-hour energy system analyses are conducted of a complete system meeting electricity, heat and transport demands, and including RES, power plants, and combined heat and power production (CHP) for district heating and transport technologies. In conclusion, the most fuel-efficient and least-cost technologies are identified through energy system and feasibility analyses. Large-scale heat pumps prove to be especially promising as they efficiently reduce the production of excess electricity. Flexible electricity demand and electric boilers are low-cost solutions, but their improvement of fuel efficiency is rather limited. Battery electric vehicles constitute the most promising transport integration technology compared with hydrogen fuel cell vehicles (HFCVs). The costs of integrating RES with electrolysers for HFCVs, CHP and micro fuel cell CHP are reduced significantly with more than 50% of RES.  相似文献   

12.
A repowering analysis of a conventional, coal‐fired industrial combined heat and power (CHP) plant by means of a gas turbine (GT) and heat recovery boiler (HRB) has been taken into consideration. The existing system, operating in one of the Polish chemical factories consists of coal‐fired boilers, back‐pressure extraction turbines, condensing turbines and steam‐fed district heat exchangers. Two variants of modernization have been proposed and examined from the thermodynamic, environmental protection and economical points of view. The first one includes HRB for preheating the boiler feed water, condensate, and district water, while the steam turbine (ST) system and coal boilers work without any structural changes. The other advanced variant introduces live steam superheaters to HRB. The coal‐fired boilers, in this light, supply only saturated steam (which is introduced into HRB), so they have to be readjusted by replacing the existing superheaters with convective vaporizers for proper flue gas cooling. Such a scheme ensures a considerable reduction of exergy losses in HRB and therefore leads to deeper flue gas cooling and a decrease of coal consumption for the assumed process steam and district heat demands. Heat and process steam demand duration curves for a typical year of operation of the plant have been adapted as input data. The mathematical model of the whole CHP plant has been built on GateCycle and Visual Basic software. The model includes design and off design analyses of boilers, steam and gas turbines and also takes into account shut‐down necessities, concerning machines during their operation outside the acceptable area of their key parameters (e.g. the minimum steam flow in the condensing section of the turbines from the point of view of rotor cooling). The computation was run many times for different sets of input data, read from the demand duration curves. Finally, the yearly values of solid and gaseous fuel consumption, as well as electricity production have been calculated. Both proposed variants of the repowered CHP system have been compared with the existing plant by means of the incremental cumulative economy of chemical energy and pollutant emission. An approximate classical economy analysis net present value (NPV), discounted pay back (DPB) has also been carried out. The whole computation has been replayed for several market GT models. The results obtained lead to the conclusion that repowering of a coal‐fired plant by means of a GT and HRB is a very effective way to improve the thermodynamic and environmental protection aspects of power and heat generation. The introduction of the live steam superheater into HRB provides additional advantages in these fields. The economic results indicate DPBs from 3 to 11 years, depending on the situation at the electricity and fuel markets. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Palm oil is one of the most important oils in the world and huge amounts of palm biomass wastes are generated through palm oil extracting process which could endanger the environment. Meanwhile, electricity shortage is getting worse due to lack of fossil fuel. To convert biomasses from palm oil industry for power generation is a beneficial approach for both power shortage and environmental degradation. In order to investigate and optimize the generation process of power and heat from the waste biomass in palm oil industry, an analytic study of a combined heat and power plant in a palm oil mill fuelled with sustainable and renewable biomass wastes was conducted using ECLIPSE software through a case study in Malaysia. The resources of the biomass wastes in the mill were identified and the samples were collected on site. The waste samples were analysed in laboratory and their calorific value, chemical composition and biomethane potential were found. A simulation model was then set up using ECLIPSE software and the model was validated using the practical data of the CHP plant. Three different combinations of the biomass wastes, including EFB and Shell as fuel for power generation, MF co-firing with Biogas, and power generation using KS, EFB and Biogas with preheaters, were used in the simulation. It was found that all of the three combinations were able to produce enough electrical power and heat (steam) to meet the power and heat demand for the production process. The simulation results indicated that the palm solid biomass wastes and the biogas produced by mill effluent were able to provide enough sustainable and renewable fuel for the palm oil production process; and it is possible to provide extra electricity for the nearby area, which is one of the best option for utilization of palm oil biomass wastes.  相似文献   

14.
In complicated systems, such as a highly integrated industrial plant with its own energy production, estimating the value of energy conservation is not so straightforward. Often, heat is priced using different kinds of methods for allocating the fuel cost to heat and electricity. However, there is no consistent way to valuate the process steam in industry, and not just one useful method for allocating costs to heat and power. In this paper, the energy method, exergy method, benefit distribution method and market‐based method are evaluated and compared from different decision‐making perspectives. The results of this study indicate that the allocation methods may overestimate by up to 200–300% the benefits from the mill perspective compared to the benefits from the mill site perspective. So, the most suitable method may vary, depending on the selected system boundary, i.e. the decision‐making perspective, the type of CHP plant and energy prices. Based on the results of this study, the exergy method fits well with the CCGT plant with a condensing unit and constant fuel input. On the other hand, the market‐based method is the most correct way to estimate the value of heat when heat conservation reduces the production of CHP electricity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
As the global demand for energy rapidly increases and fossil fuels will be soon exhausted, bio‐energy has become one of the key options for shorter and medium term substitution for fossil fuels and the mitigation of greenhouse gas emissions. Biomass currently supplies 14% of the world's energy needs. Biomass pyrolysis has a long history and substantial future potential—driven by increased interest in renewable energy. This article presents the state‐of‐the‐art of biomass pyrolysis systems, which have been—or are expected to be—commercialized. Performance levels, technological status, market penetration of new technologies and the costs of modern forms of biomass energy are discussed. Advanced methods have been developed in the last two decades for the direct thermal conversion of biomass to liquid fuels, charcoals and various chemicals in higher yields than those obtained by traditional pyrolysis processes. The most important reactor configurations are fluidized beds, rotating cones, vacuum and ablative pyrolysis reactors. Fluidized beds and rotating cones are easier for scaling and possibly more cost effective. Slow pyrolysis is being used for the production of charcoal, which can also be gasified to obtain hydrogen‐rich gas. The short residence time pyrolysis of biomass (flash pyrolysis), at moderate temperatures, is being used to obtain a high yield of liquid products (up to 70% wt), particularly interesting as energetic vectors. Bio‐oil can substitute for fuel oil—or diesel fuel—in many static applications including boilers, furnaces, engines and turbines for electricity generation. While commercial biocrudes can easily substitute for heavy fuel oils, it is necessary to improve the quality in order to consider biocrudes as a replacement for light fuel oils. For transportation fuels, high severity chemical/catalytic processes are needed. An attractive future transportation fuel can be hydrogen, produced by steam reforming of the whole oil, or its carbohydrate‐derived fraction. Pyrolysis gas—containing significant amount of carbon dioxide, along with methane—might be used as a fuel for industrial combustion. Presently, heat applications are most economically competitive, followed by combined heat and power applications; electric applications are generally not competitive. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Dag Henning 《Energy》1997,22(12):1135-1150
MODEST, an energy-system optimisation model is described. It has been applied to a typical local Swedish electricity and district-heating utility and to the national power system. Present and potential installations and energy flows should be considered and their best combination can be obtained through optimisation. MODEST uses linear programming to minimise the capital and operation costs of energy supply and demand-side management. Seasonal, weekly, and diurnal variations of, for example, demand, costs, and capacities are considered. MODEST may be used to decide which investments to make, the dimensioning of new installations, and the operation of all system components. The municipal utility under study should now expand its heat production using woodchips. Electricity export or nuclear phase-out will probably raise the Swedish electricity prices. In this case, cost minimisation is achieved by introducing combined heat and power (CHP) production in the municipality. Fossil fuels should be used in the cogeneration plant at current taxation levels but biofuels are favourable if higher environmental fees are imposed for CO2 emissions. Biomass capacity expansion could decrease local CO2 emissions by 80%. Efficiency improvements for electricity use have robust profitability at high electricity prices. The Swedish electricity demand may be satisfied without nuclear power and fossil fuels through massive biomass use, wind-power supply, and energy conservation.  相似文献   

17.
The energy-system optimization model MODEST is described, especially heat storage and electricity load management. Linear programming is used for minimization of capital and operation costs. MODEST may be used to find the optimal investments and when to make them. The period under study can be divided into several linked subperiods which may consist of an arbitrary number of years. MODEST is here applied to a municipal electricity and district-heating system during three five-year periods. Each year is divided into three seasons. Demand peaks, as well as weekly and diurnal variations of, for example, costs are considered. The electricity demand is divided into the three sectors households, industries, and service. The electricity demand may be reduced by energy conservation, replacement of electric heating and load management. The profitability of load management, as well as cogeneration with and without heat storage at different prices of purchased power is calculated. At traditional Swedish electricity prices, the local utility should build a woodchips-fired steam-cycle CHP (combined heat and power) plant. Consumers would find it beneficial to reduce their electricity use by conservation and switching from electric heating to oil and biofuel. If just marginal power production costs are paid, the utility should introduce biomass-fired heat-only boilers instead. Electricity conservation is smaller at these lower prices. Load management is mainly profitable at the first price scheme which includes output-power-related charges. The heat storage should be used threefold: to cover demand peaks, as well as to enable increased CHP output when it is limited by the heat demand or to run heat pumps at cheap night electricity instead of in the daytime. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production.In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler.The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.  相似文献   

19.
In recent years, integrated gasification combined cycle technology has been gaining steady popularity for use in clean coal power operations with carbon capture and sequestration (CCS). This study focuses on investigating two approaches to improve efficiency and further reduce the greenhouse gas (GHG) emissions. First, replace the traditional subcritical Rankine steam cycle portion of the overall plant with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Employing biomass as a feedstock has the advantage of being carbon neutral or even carbon negative if CCS is implemented. However, due to limited feedstock supply, such plants are usually small (2–50 MW), which results in lower efficiency and higher capital and production costs. Considering these challenges, it is more economically attractive and less technically challenging to co‐combust or co‐gasify biomass wastes with low‐rank coals. Using the commercial software, Thermoflow®, this study analyzes the baseline plants around 235 MW and 267 MW for the subcritical and supercritical designs, respectively. Both post‐combustion and pre‐combustion CCS conditions are considered. The results clearly show that utilizing a certain type of biomass with low‐rank coals up to 50% (wt.) can, in most cases, not only improve the efficiency and reduce overall emissions but may be economically advantageous, as well. Beyond a 10% Biomass Ratio, however, the efficiency begins to drop due to the rising pretreatment costs, but the system itself still remains more efficient than from using coal alone (between 0.2 and 0.3 points on average). The CO2 emissions decrease by about 7000 tons/MW‐year compared to the baseline (no biomass), making the plant carbon negative with only 10% biomass in the feedstock. In addition, implementing a supercritical steam cycle raises the efficiency (1.6 percentage points) and lowers the capital costs ($300/kW), regardless of plant layout. Implementing post‐combustion CCS consistently causes a drop in efficiency (at least 7–8 points) from the baseline and increases the costs by $3000–$4000/kW and In recent years, integrated gasification combined cycle technology has been gaining steady popularity for use in clean coal power operations with carbon capture and sequestration (CCS). This study focuses on investigating two approaches to improve efficiency and further reduce the greenhouse gas (GHG) emissions. First, replace the traditional subcritical Rankine steam cycle portion of the overall plant with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Employing biomass as a feedstock has the advantage of being carbon neutral or even carbon negative if CCS is implemented. However, due to limited feedstock supply, such plants are usually small (2–50 MW), which results in lower efficiency and higher capital and production costs. Considering these challenges, it is more economically attractive and less technically challenging to co‐combust or co‐gasify biomass wastes with low‐rank coals. Using the commercial software, Thermoflow®, this study analyzes the baseline plants around 235 MW and 267 MW for the subcritical and supercritical designs, respectively. Both post‐combustion and pre‐combustion CCS conditions are considered. The results clearly show that utilizing a certain type of biomass with low‐rank coals up to 50% (wt.) can, in most cases, not only improve the efficiency and reduce overall emissions but may be economically advantageous, as well. Beyond a 10% Biomass Ratio, however, the efficiency begins to drop due to the rising pretreatment costs, but the system itself still remains more efficient than from using coal alone (between 0.2 and 0.3 points on average). The CO2 emissions decrease by about 7000 tons/MW‐year compared to the baseline (no biomass), making the plant carbon negative with only 10% biomass in the feedstock. In addition, implementing a supercritical steam cycle raises the efficiency (1.6 percentage points) and lowers the capital costs ($300/kW), regardless of plant layout. Implementing post‐combustion CCS consistently causes a drop in efficiency (at least 7–8 points) from the baseline and increases the costs by $3000–$4000/kW and $0.06–$0.07/kW‐h. The SOx emissions also decrease by about 190 tons/year (7.6 × 10?6 tons/MW‐year). Finally, the CCS cost is around $65–$72 per ton of CO2. For pre‐combustion CCS, sour shift appears to be superior both economically and thermally to sweet shift in the current study. Sour shift is always cheaper, (by a difference of about $600/kW and $0.02‐$0.03/kW‐h), easier to implement, and also 2–3 percentage points more efficient. The economic difference is fairly marginal, but the trend is inversely proportional to the efficiency, with cost of electricity decreasing by 0.5 cents/kW‐h from 0% to 10% biomass ratio (BMR) and rising 2.5 cents/kW‐h from 10% to 50% BMR. Pre‐combustion CCS plants are smaller than post‐combustion ones and usually require 25% less energy for CCS due to their compact size for processing fuel flow only under higher pressure (450 psi), versus processing the combusted gases at near‐atmospheric pressure. Finally, the CO2 removal cost for sour shift is around $20/ton, whereas sweet shift's cost is around $30/ton, which is much cheaper than that of post‐combustion CCS: about $60–$70/ton. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm3 y−1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号