首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 252 毫秒
1.
包混工艺是一种应用前景广泛的制备多孔炭/碳化物材料的工艺,包混粉体酚醛树脂含量可以有效地控制其多孔制品的成分和性能.本工作采用正交实验法研究了包混粉体中酚醛树脂含量与工艺参数(成分配比、热处理温度、热处理时间、老化处理温度、老化处理时间)之间的关系.结果表明,原料中酚醛树脂与硅粉质量比对包混粉体中酚醛树脂含量的影响最大.包混粉体中酚醛树脂的含量随着原料中酚醛树脂与硅粉质量比的增加而增加.当原料中酚醛树脂与硅粉的质量比为1:1,在45℃热处理时间120min,在45℃老化处理90min时,酚醛树脂能更有效、更均匀地包覆在硅粉表面.  相似文献   

2.
酚醛树脂裂解炭用作锂离子电池负极材料的研究   总被引:8,自引:1,他引:7  
以热塑性酚醛树脂为前驱体,在600℃~1600℃下裂解制备下锂离子电池负极用树脂炭,采用元素分析法考察了酚醛树脂的元素组成,并通过X射线衍射、恒电流法研究了树脂炭微晶的变化以及充放电性能。研究发现;随着裂解温度的提高。酚醛树脂炭的微晶结构逐渐规整;首次充放电容量下降,这与其热处理温度和氢含量有关。  相似文献   

3.
以2D叠层炭布为增强体,以掺加硅粉、炭粉和碳化硅粉3种无机粉体的糠酮树脂为前驱体,经浸渍、热压固化、炭化裂解和高温热处理过程制备出炭/炭-碳化硅(C/C-SiC)复合材料。采用多功能密度测试仪、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和力学万能试验机,研究了硅粉、炭粉和碳化硅粉的掺加量以及后续化学气相渗透(CVI)处理对C/C-SiC复合材料致密度、微观结构及抗弯强度的影响。结果表明:硅粉、炭粉和碳化硅粉掺加后所形成的碳化硅颗粒对复合材料起到颗粒弥散增强的作用。具体而言,粉体掺加量越多,C/C-SiC复合材料越致密,抗弯强度越大;在三点弯曲载荷作用下,C/C-SiC复合材料呈假塑性断裂模式,并且出现层间开裂现象。对C/C-SiC复合材料进行10h CVI处理后发现,形成的热解炭可以作为炭纤维与树脂炭基体之间的界面,弥补了树脂炭的微孔,相比于未进行CVI处理的C/C-SiC复合材料,密度最大提高了4.98%,抗弯强度最大提高了38.86%。  相似文献   

4.
采用Stber法,以间苯二酚、甲醛为原料,HCl为催化剂,乙醇和水为混合溶剂,制备了具有纳微米结构整体式间苯二酚甲醛树脂,以之为前驱体,在Ar气氛中,经900℃炭化2 h,制备了整体式微孔-介孔-大孔多级孔炭.采用傅里叶红外光谱仪(FTIR)、热重分析仪(TG)、扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、透射电镜(TEM)及N_2气等温吸-脱附实验,对多级孔炭及其前驱体组成、形貌和孔结构进行了表征.结果表明:通过简单调控间苯二酚和甲醛用量、醇水比可制备比表面高达626 m~2/g整体式多级孔炭,实现了酚醛树脂裂解炭在形貌和孔径分布可调(在微孔、介孔和大孔范围内);随着间苯二酚和甲醛用量增加,裂解炭孔径在大孔区域分布强度降低;随着醇水比增大,酚醛树脂裂解碳微球粒径增大,裂解炭由离散相微球逐渐转变为连续相;通过增大醇水比,可有效增强酚醛树脂交联密度,降低酚醛树脂裂解炭孔径在微孔范围分布强度.  相似文献   

5.
以添加不同含量的五氧化二磷的热塑性酚醛树脂为前驱体,经热固化后升温至600~1600℃下热裂解制备掺磷树脂裂解炭.元素分析、氮气物理吸附和X射线衍射分别考察了裂解炭的元素组成、BET比表面积以及微晶结构变化;恒定电流充放电技术研究了裂解炭的充放电性能.研究发现五氧化二磷的加入使得树脂裂解炭的微晶结构发生了很大改变:随着磷掺杂量的增加,树脂炭的微晶层间距减小,微晶变得更加无序;BET比表面积先减小而后增加;放电容量先增加而后减小,当其含量为 9wt%时,放电容量达到最大值(528mA·h·g-1),是掺杂前(230mA·h·g-1)的2倍多.  相似文献   

6.
通过一步水热制备TiO2/Al2O3核壳型纳米粉体,并且研究了pH值、水热温度和时间对核壳粉体的影响,最佳的反应条件为:制备前驱体的pH≈9.0,水热温度为260℃,水热保温时间为3.5h.产品的平均晶粒粒径小于20nm.通过XRD,TEM和SEM表征,核壳型纳米TiO2/Al2O3粉体包膜良好,且TiO2/Al2O3添加到水性乳胶漆后能提高其抗老化性能.  相似文献   

7.
以大蒜皮为碳源,先采用水热法制备炭前驱体,再经KOH活化法制备了高比表面积和高孔体积的多孔炭材料。采用氮气吸附仪、扫描电子显微镜(SEM)和X-射线衍射(XRD)仪对所制多孔炭的孔结构和形貌特性进行表征。结果表明,活化温度对多孔炭材料的比表面积和孔体积影响较大,当活化温度为800℃和KOH/炭前驱体浓度比为2时,得到的多孔炭材料(AC-28)比表面积和孔体积分别高达1 262 m~2/g和0.70 cm~3/g;当活化温度为600℃和KOH/炭前驱体浓度比为2时,多孔炭材料(AC-26)比表面积和孔体积分别为947 m~2/g和0.51 cm~3/g。虽然AC-26样品的比表面积和孔体积均较低,但其微孔率高达98%,使得此材料CO_2吸附性能优异,在25℃和1 bar时的CO_2吸附量高达4.22 mmol/g。常压下影响多孔炭材料中CO_2吸附量的主要因素是微孔率,并不是由比表面积和孔体积决定。当具有合适的孔径结构和比表面积时,生物质基多孔炭材料中微孔率的增加会有效增加CO_2吸附量。  相似文献   

8.
酚醛树脂基泡沫炭是一种高性能的高强轻质隔热材料,酚醛泡沫的炭化热处理是制备酚醛树脂基泡沫炭倒丶工艺.本文以热塑性酚醛树脂为原料,采用液相低压发泡方法制备得可进一步炭化制得高性能的泡沫炭的酚醛树脂基泡沫前驱体.通过热分析仪、元素分析仪测试和分析酚醛泡沫体在炭化热处理过程中的重量和元素含量的变化及规律,并研究泡沫体在热处理过程中的径向和轴向尺寸、重量、体积和表观体积密度的变化和规律.结果表明:350~700℃,酚醛树脂泡沫体热失重较剧烈,热解速度最快,失重率约为40%,相应的热解温度会比纯树脂延缓和滞后;在热处理过程中,泡沫体在径向和轴向的收缩是不同步的:随热处理温度的提高,泡沫体的重量和体积不断减小,密度却呈现波折形变化:炭化产物中碳元素的含量随温度的升高而不断增加,各元素含量变化最明显的温度区是350~600℃.  相似文献   

9.
炭膜可以通过各种前驱体,如酚醛树脂的高温裂解方法制备。该过程中,裂解条件对炭膜的性质有较大影响。研究不同裂解温度及臭氧后处理对炭膜的孔隙率及气体吸附行为的影响。结果表明,当裂解温度升高(由500℃提高到800℃),炭膜的平均孔径减小,孔体积与气体吸附能力先增大后减小。在800℃下,炭膜表现出分子筛的分离性能。臭氧后处理过程使炭膜孔径增大,气体吸附效率及动态吸附选择性降低,弱化了炭膜的分离性能。  相似文献   

10.
以酚醛树脂、聚乙烯醇和糠醛的混合物包覆玻璃纤维,经炭化和氯化锌活化制备出一种廉价的纤维状活性炭材料。表征了这种纤维状活性炭材料的表面形态、微晶结构、孔结构、表面化学特征和机械强度,评价了该材料的吸附性能。结果表明,在炭前驱体中加入聚乙烯醇和糠醛可以有效促进孔隙的发育,提升所制备多孔炭材料的孔隙率。当在前驱体中加入聚乙烯醇和糠醛时,所制多孔炭材料的比表面积可达2 023 m~2/g,否则其比表面积则仅为404 m~2/g。聚乙烯醇的加入提高了氯化锌的溶解性,促进了炭前驱体的活化;而糠醛与酚醛交联结构的形成则提高了炭前驱体的热稳定性,提高了炭得率。这两方面的措施均有利于提高样品的比表面积并降低其制备成本。该纤维状活性炭材料具有与传统活性炭纤维相似的微晶结构和吸附性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号