首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 281 毫秒
1.
岩石边坡潜在失稳区域微震识别方法   总被引:2,自引:2,他引:0  
 为深入研究锦屏一级水电站左岸边坡深部岩体微震活动规律并评价边坡稳定性,在已有微震监测资料基础上,结合常规监测数据,并借助RFPA有限元数值模拟手段,分析左岸边坡深部岩体微破裂萌生、发育和扩展的演化机制,解释高程1 829 m处2#固结灌浆平洞多点位移计变化与微震事件时空分布规律之间的内在联系,再现典型剖面边坡渐进破坏全过程,重点阐述高程1 885 m坝顶平台裂缝形成机制。综合施工工况和工程地质情况分析,表明微震监测系统可以有效地识别和圈定边坡深部岩体微破裂区域和潜在滑裂面,边坡外观变形及微震活动性与该部位地质构造及灌浆活动有密切关系,灌浆导致的应力重分布和边坡内部天然裂隙带错动变形是诱发高程1 885 m坝顶平台裂缝的主要原因。研究结果为更好地理解和分析复杂应力条件下岩石边坡变形及其微震活动性诱发失稳机制提供重要的参考。  相似文献   

2.
通过对锦屏一级水电站普斯罗沟坝址左岸深部裂缝空间发育规律、深部裂缝变形特征的考察 ,从地质、力学、数值方法多方面分析了造成深部裂缝发育规律和变形特征的因素。在此基础上明确指出 ,普斯罗沟左岸深部裂缝的成因就是边坡在自重应力和构造应力的复合应力场卸荷的结果 ,没有超出常规意义下边坡卸荷作用的范畴。  相似文献   

3.
大型复杂岩质高边坡安全监测与分析   总被引:19,自引:6,他引:13  
 岩石高边坡稳定性是水电站建设能否顺利进行的关键问题之一。锦屏一级水电站左岸开挖高边坡地应力高、断层裂隙发育、岩体卸荷深度大,地质条件十分复杂,边坡在施工期和运行期的稳定性问题特别突出。介绍左岸边坡的监测布置,并对岩体表面变形趋势、空间分布形态、变形与开挖的关系进行分析,对多点位移计变形大小、岩体变形与结构面的关系进行探讨,对平洞石墨杆收敛计变形、谷幅平距观测、锚索荷载和抗剪洞变形等监测结果进行综合分析,得到边坡岩体的变形规律。研究结果表明,锦屏一级水电站左岸边坡岩体受开挖影响的范围较大,超过80 m,边坡岩体卸荷松弛变形量级较大,边坡岩体应力释放与转移过程较长,边坡达到完全稳定需要的时间较长。该工程的监测成果可供其他类似工程参考和借鉴。  相似文献   

4.
锦屏一级水电站左岸坝肩高边坡长期稳定性事关该水电站的正常安全运营。为充分掌握左岸岩石高边坡长期稳定性,建立了含f5,f8,f2,f42–9和煌斑岩脉X等软弱结构面的地质力学模型,并采用西原模型及有限差分数值计算方法,模拟正常蓄水位下左岸边坡岩体的长期力学行为。数值分析结果显示:左岸坝肩高边坡蠕变数值计算结果与现场监测数据总体位移变化趋势基本一致;经过一段时间后,边坡岩体蠕变位移变化基本趋于稳定,蠕变速率逐渐趋于恒定,西原模型可以反映锦屏一级水电站左岸边坡岩体的蠕变变形特性;在f5,f8,f2,f42–9和煌斑岩脉X出露区域以及开口线外危岩体边坡、1 960 m高程以上缆机平台边坡、1 885~1 960 m高程开挖边坡、"大块体"、PD44X平洞深部岩体等部位的蠕变位移变化比较明显;特别是拱肩槽1 730 m高程开挖平台与软弱结构面交汇部位,由于受到拱坝的拱端推力作用,蠕变变形更为明显,应重点关注,加强监测力度。  相似文献   

5.
锦屏一级水电站左岸高陡边坡内部水平向很大深度上发育了大量裂缝。合理解释这一特殊的工程地质现象成为工程地质学的新课题。从工程地质类比的角度对锦屏一级水电站坝区4个边坡工程地质条件进行了详细比较,指出了区域的地壳活动水平和构造应力场强度是普斯罗沟左岸边坡深部裂缝形成的本质原因和前提条件,但是仅仅具备这个条件并不一定在边坡内部出现深部拉裂,普斯罗沟左岸边坡的边坡坡体结构以及岩性组合是深部裂缝形成的物质基础。从力学机制上来讲,它与三滩左岸边坡的变形力学机制应该相同,只是岩性和岸坡结构导致的变形破坏形式不同。  相似文献   

6.
锦屏一级水电站左岸边坡微震监测系统及其工程应用   总被引:8,自引:6,他引:2  
锦屏一级水电站坝区山高坡陡,两岸山体地应力高,左岸存在深部裂缝、低波速松弛岩体、煌斑岩脉(X)及f2,f5断层等复杂地质条件。为对左岸边坡深部岩体微震活动性进行实时监测和分析,2009年6月该边坡安装加拿大ESG公司生产的微震监测系统。通过构建左岸边坡三维地质模型和优化传感器布设方案,采用人工定点爆破试验对监测系统定位性能进行测试,结果显示在传感器阵列范围内的震源定位误差小于12m,证明系统具有较高的定位精度。对拾取的事件波形进行分析和聚类研究,给出系统运行以来微震事件的时空分布规律,初步圈定左岸边坡微震活动引起的深部岩体变形区域,并结合RFPA有限元软件对比研究边坡应力场和潜在滑裂面。研究结果表明,该边坡微震监测系统的设计和实施满足深部岩体变形的全局监测,能够识别左岸边坡可能存在的潜在岩体破坏区域和滑移面,为边坡后期生产性灌浆以及加固处理提供一些参考,也为高岩质边坡稳定性分析提供一个新的研究思路。  相似文献   

7.
 岩石高边坡稳定性是水电工程建设能否顺利进行的关键问题之一。锦屏一级水电站左岸边坡地应力高,断层裂隙发育,岩体卸荷深度大,地质条件复杂,边坡在施工期和运行期的稳定性问题十分突出。介绍左岸边坡微震活动特征,并对开挖卸荷过程微震活动性时空分布规律以及与不同时段、区域的施工工况进行对比分析,对岩石微破裂萌生、发育、扩展、聚集趋势与岩体损伤关系进行探讨,得到左岸边坡微震活动与施工响应之间的相互关系。结果表明:大坝基坑、煌斑岩脉置换斜井、1 670 m雾化区边坡排水廊道开挖和边坡弱层固结灌浆引起的深部岩体卸荷松弛而诱致微震活动性,可以很好地揭示和反映现场施工工况。研究成果可供其他类似岩质高边坡工程借鉴、参考。  相似文献   

8.
锦屏一级水电站坝肩左岸边坡地质复杂,岩体内层面、层间挤压错动带、断层及节理裂隙发育;谷坡深部岩体内地应力高,浅表部岩体由于应力释放卸荷松弛强烈,且标段区内岸上坡深部存在深部裂缝,开挖后形成522m高的人工边坡,边坡稳定问题非常突出。施工中采用了大面积的单孔多锚头压力分散型无黏结预应力锚索深层支护、框格梁及锚喷混凝土浅层支护。通过一年多的工程实践,基本完成了EL1960m以上锚索施工。经过锚索测力计、测斜孔、多点变位计等监测表明,锚固后的开挖边坡是稳定的。  相似文献   

9.
 锦屏一级水电站是我国在建的世界最高拱坝,坝肩工程边坡高度达500 m,规模巨大。电站枢纽区地处深山峡谷地区,自然谷坡高陡,地应力水平较高,谷坡岩体卸荷强烈,并发育有断层、层间挤压带、深部裂缝等不良地质现象。在地质条件详细调查基础上,分析左岸缆机平台以上的顺坡向倾倒变形体、左岸1 800 m高程以上的楔形双滑变形拉裂体等坡体结构及其破坏模式,并进行边坡稳定性分区和计算分析。根据坡体结构特点,确定少开挖、弱爆破、强支护、分区分层支护、控制整体、以面覆点的开挖施工和加固设计原则,实施以预应力锚索和抗剪洞为主、辅以锚杆、混凝土框格梁等措施的局部和整体、浅表和深层的全方位、多层次边坡加固控制体系。精细设计并严格控制施工时序、爆破技术和工艺,保证建基面岩体质量,通过动态设计和完善的管理机制确保边坡施工安全。2006年7月~2009年9月边坡监测资料表明:边坡浅表最大横向位移79.5 mm,最大垂直下沉位移52.5 mm,主要受地层岩性和坡体结构控制;深层最大变形量60 mm,最大速率0.1 mm/d,主要受深部裂缝控制;目前位移均趋于收敛,满足安全控制标准。锦屏一级水电站坝肩高边坡工程的成功实施为我国工程建设提供新的经验和借鉴。  相似文献   

10.
深入研究叶巴滩水电站坝址区对称发育的深部变形破裂的分布规律、地质特征、类型和控制因素,为进一步评价深部变形破裂岩体质量及可利用性奠定基础。基于野外调查、地震层析成像(CT)、平硐波速测试(Vp)和工程地质类比等方法,揭示深部变形破裂分布规律与宏观地质特征,划分深部变形破裂类型,探讨对称分布的深部变形破裂的控制因素。研究表明:深部变形破裂分布于距边坡表面水平深度约80~140 m范围,具有随高程的升高水平分布深度逐渐增加的规律,两岸均未形成贯通性破裂面;深部变形破裂大多继承早期构造节理形成,具有明显的张性特征,局部受地下水影响,破裂面表层风化加剧;深部变形破裂类型可分为轻微松弛型、中等松弛型和强烈松弛型;地壳抬升、河谷演化和高地应力等区域因素与边坡形态、边坡物质基础及微地貌共同控制深部变形破裂的形成和分布。  相似文献   

11.
复杂岩质高边坡工程安全监测三维可视化分析   总被引:4,自引:2,他引:2  
应用自主研发的岩石边坡工程安全监测三维可视化分析系统(SlopeMoni3D),以锦屏一级水电站左岸高边坡工程为例,建立安全监测分布式分析平台,对边坡安全监测系统与赋存地质条件进行虚拟现实可视化分析。以三维云图的可视化形式对安全监测获得的左岸边坡开挖区域浅表、深部变形发展趋势及锚索测力计锚固力在相同时段变化量的空间分布进行综合分析,完成边坡整体稳定性和变形趋势的分析评估。分析结果表明:(1)以虚拟现实可视化方式解析复杂岩质边坡工程区域地质条件,可直观表达各监测项目测点布置与地质结构的相互关系,便于监测成果与地质条件和施工信息的综合分析;(2)借助三维可视化分析平台所提供的监测数据管理和监测数据场三维云图绘制等功能,可直观比较相同监测时间段不同监测项目所获得监测物理量的三维云图分布,便于从地质、施工等方面综合分析边坡各区域的变形趋势和稳定状态。  相似文献   

12.
深卸荷变形拉裂岩体锚索预应力损失规律研究   总被引:1,自引:1,他引:0  
 根据预应力锚索施工过程,将锚索预应力损失分为张拉损失、锁定损失和随时间的损失,并分别给出各自定义和计算公式。对锦屏一级水电站左岸边坡锚索监测资料进行统计分析,得到锚索预应力损失的分布特征。锚索预应力损失的分布特征为预应力张拉损失最大,预应力随时间的损失其次,锁定损失最小。将锦屏一级水电站左岸边坡锚索预应力损失规律与其他几个类似工程比较,得出锦屏一级水电站左岸边坡锚索预应力张拉损失明显偏大。结合锦屏一级水电站左岸边坡地质条件,分析锚索预应力张拉损失较大的原因,并提出相应改进措施。最后对锦屏一级水电站左岸边坡锚索现存荷载进行评价分析,结果表明,锚索现存荷载基本满足加固设计要求。研究结果可供其他类似工程参考和借鉴。  相似文献   

13.
水电工程大多位于高山峡谷地区,工程兴建后形成水库,水库蓄水后,库水升降引起库周坡体内地下水位和地下水渗流场发生变化,改变了坡体原有的受力状态,引起应力重分布,易使库区原有滑坡体或稳定性较差库段坡体产生变形破坏。锦屏一级水电站水库蓄水后库岸出现了变形破坏,部分库岸失稳对工程安全构成威胁,也对当地居民生命财产安全造成较大威胁。通过对锦屏一级水电站水库蓄水后变形破坏库岸的大量现场调查,分析了锦屏一级水电站水库蓄水后库岸变形破坏特征,总结了库岸变形破坏规律,可为其他工程水库蓄水后库岸变形分析预测及稳定性评价提供一定参考。  相似文献   

14.
Safety monitoring and stability analysis of high slopes are important for high dam construction in high mountainous regions or precipitous gorges. In this paper, deformation characteristics of toppling block at upper abutment, deforming tensile rip wedge in the middle part and deep fractures are comprehensively analyzed based on the geological conditions, construction methods and monitoring results of left abutment slope in Jinping I hydropower station. Safety analyses of surface and shallow-buried rock mas...  相似文献   

15.
研究区位于拟建的云南怒江某水电站坝区右岸电站进水口附近,斜坡主要由混合花岗岩和混合片麻岩组成,坡内受中缓倾河谷断层控制的变形破裂现象十分明显,虽然其宏观组合模式也表现为滑移–张裂,但是这些断层并未切脚出露,而是埋藏于坡脚以里或谷下一定的深度,按传统工程地质及岩石力学观点很难理解上述现象的成因。根据现场地质调查,结合其发育的地质、岩体力学环境条件的分析认为,上述变形破裂现象乃是在挽近地质时期河谷演化过程中,谷底(坡脚及谷下)岩体的风化软化所导致岸坡时效变形破裂现象,并通过数值模拟对其进行了论证。最后指出,对岩质岸坡演化而言,谷底(坡脚)软化效应是一种具有普适意义的斜坡地质作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号