首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨程  陆佳民  冯钧 《计算机应用》2020,40(11):3184-3191
随着知识图谱的日益发展和在各个垂直领域的广泛应用,对于资源描述框架(RDF)数据的高效处理需求日益成为现代大数据管理领域中的新课题。RDF是W3C提出的用于描述知识图谱实体以及实体间关系的数据模型。为了有效地应对大规模RDF数据的存储和查询,很多学者考虑在分布式环境中管理RDF数据。RDF数据的分布式存储所面临的关键问题是数据的划分,而划分的结果很大程度上决定了SPARQL的查询性能。从数据划分的角度,主要围绕两类:基于图结构的RDF数据划分方法和基于语义的RDF数据划分方法展开深入阐述。前者包括多粒度层次划分、模板划分和聚类划分,适用于通用领域查询的语义范畴较为宽泛的场景;后者包括哈希划分、垂直划分和模式划分,更加适用于垂直领域查询的语义范畴相对固定的环境。此外,针对几种典型的划分方法进行对比与分析,为未来RDF数据划分方法的研究提供参考。最后,对未来RDF数据划分方法的发展方向进行了归纳总结。  相似文献   

2.
杨程  陆佳民  冯钧 《计算机应用》2005,40(11):3184-3191
随着知识图谱的日益发展和在各个垂直领域的广泛应用,对于资源描述框架(RDF)数据的高效处理需求日益成为现代大数据管理领域中的新课题。RDF是W3C提出的用于描述知识图谱实体以及实体间关系的数据模型。为了有效地应对大规模RDF数据的存储和查询,很多学者考虑在分布式环境中管理RDF数据。RDF数据的分布式存储所面临的关键问题是数据的划分,而划分的结果很大程度上决定了SPARQL的查询性能。从数据划分的角度,主要围绕两类:基于图结构的RDF数据划分方法和基于语义的RDF数据划分方法展开深入阐述。前者包括多粒度层次划分、模板划分和聚类划分,适用于通用领域查询的语义范畴较为宽泛的场景;后者包括哈希划分、垂直划分和模式划分,更加适用于垂直领域查询的语义范畴相对固定的环境。此外,针对几种典型的划分方法进行对比与分析,为未来RDF数据划分方法的研究提供参考。最后,对未来RDF数据划分方法的发展方向进行了归纳总结。  相似文献   

3.
The volume of RDF data increases dramatically within recent years, while cloud computing platforms like Hadoop are supposed to be a good choice for processing queries over huge data sets for their wonderful scalability. Previous work on evaluating SPARQL queries with Hadoop mainly focus on reducing the number of joins through careful split of HDFS files and algorithms for generating Map/Reduce jobs. However, the way of partitioning RDF data could also affect system performance. Specifically, a good partitioning solution would greatly reduce or even totally avoid cross-node joins, and significantly cut down the cost in query evaluation. Based on HadoopDB, this work processes SPARQL queries in a hybrid architecture, where Map/Reduce takes charge of the computing tasks, and RDF query engines like RDF-3X store the data and execute join operations. According to the analysis of query workloads, this work proposes a novel algorithm for automatically partitioning RDF data and an approximate solution to physically place the partitions in order to reduce data redundancy. It also discusses how to make a good trade-off between query evaluation efficiency and data redundancy. All of these proposed approaches have been evaluated by extensive experiments over large RDF data sets.  相似文献   

4.
As RDF data continue to gain popularity, we witness the fast growing trend of RDF datasets in both the number of RDF repositories and the size of RDF datasets. Many known RDF datasets contain billions of RDF triples (subject, predicate and object). One of the grant challenges for managing these huge RDF data is how to execute RDF queries efficiently. In this paper, we address the query processing problems against the billion triple challenges. We first identify some causes for the problems of existing query optimization schemes, such as large intermediate results, initial query cost estimation errors. Then, we present our block-oriented dynamic query plan generation approach powered with pipelining execution. Our approach consists of two phases. In the first phase, a near-optimal execution plan for queries is chosen by identifying the processing blocks of queries. We group the join patterns sharing a join variable into building blocks of the query plan since executing them first provides opportunities to reduce the size of intermediate results generated. In the second phase, we further optimize the initial pipelining for a given query plan. We employ optimization techniques, such as sideways information passing and semi-join, to further reduce the size of intermediate results, improve the query processing cost estimation and speed up the performance of query execution. Experimental results on several RDF datasets of over a billion triples demonstrate that our approach outperforms existing RDF query engines that rely on dynamic programming based static query processing strategies.  相似文献   

5.
6.
Web search for a planet: The Google cluster architecture   总被引:11,自引:0,他引:11  
Barroso  L.A. Dean  J. Holzle  U. 《Micro, IEEE》2003,23(2):22-28
Amenable to extensive parallelization, Google's web search application lets different queries run on different processors and, by partitioning the overall index, also lets a single query use multiple processors. to handle this workload, Googless architecture features clusters of more than 15,000 commodity-class PCs with fault tolerant software. This architecture achieves superior performance at a fraction of the cost of a system built from fewer, but more expensive, high-end servers.  相似文献   

7.
Semantics preserving SPARQL-to-SQL translation   总被引:2,自引:0,他引:2  
Most existing RDF stores, which serve as metadata repositories on the Semantic Web, use an RDBMS as a backend to manage RDF data. This motivates us to study the problem of translating SPARQL queries into equivalent SQL queries, which further can be optimized and evaluated by the relational query engine and their results can be returned as SPARQL query solutions. The main contributions of our research are: (i) We formalize a relational algebra based semantics of SPARQL, which bridges the gap between SPARQL and SQL query languages, and prove that our semantics is equivalent to the mapping-based semantics of SPARQL; (ii) Based on this semantics, we propose the first provably semantics preserving SPARQL-to-SQL translation for SPARQL triple patterns, basic graph patterns, optional graph patterns, alternative graph patterns, and value constraints; (iii) Our translation algorithm is generic and can be directly applied to existing RDBMS-based RDF stores; and (iv) We outline a number of simplifications for the SPARQL-to-SQL translation to generate simpler and more efficient SQL queries and extend our defined semantics and translation to support the bag semantics of a SPARQL query solution. The experimental study showed that our proposed generic translation can serve as a good alternative to existing schema dependent translations in terms of efficient query evaluation and/or ensured query result correctness.  相似文献   

8.
传统的SPARQL查询引擎在处理查询时以三元组模式为基本单位做查询优化处理,在三元组模式较多时存在着过多的连接操作,开销比较大。文中基于文档数据库的存储和查询特点,提出一种利用主语分类的方式来存储RDF数据的方法,将不同的RDF三元组按主语分成不同的类,并存入文档数据库的文档中。在处理SPARQL查询时将三元组模式也按照主语分类,构成以主语相关块为单位的查询图,并提出一种基于属性相关性的选择度估计方法来优化查询执行计划。文中利用文档数据库CouchDB实现了新的SPARQL查询引擎,实验证明文中的方法能够提高SPARQL基本图模式查询的效率。  相似文献   

9.
One of the challenges of managing an RDF database is predicting performance of SPARQL queries before they are executed. Performance characteristics, such as the execution time and memory usage, can help data consumers identify unexpected long-running queries before they start and estimate the system workload for query scheduling. Extensive works address such performance prediction problem in traditional SQL queries but they are not directly applicable to SPARQL queries. In this paper, we adopt machine learning techniques to predict the performance of SPARQL queries. Our work focuses on modeling features of a SPARQL query to a vector representation. Our feature modeling method does not depend on the knowledge of underlying systems and the structure of the underlying data, but only on the nature of SPARQL queries. Then we use these features to train prediction models. We propose a two-step prediction process and consider performances in both cold and warm stages. Evaluations are performed on real world SPRAQL queries, whose execution time ranges from milliseconds to hours. The results demonstrate that the proposed approach can effectively predict SPARQL query performance and outperforms state-of-the-art approaches.  相似文献   

10.
We consider the problem of efficiently computing distributed geographical k-NN queries in an unstructured peer-to-peer (P2P) system,in which each peer is managed by an individual organization and can only communicate with its logical neighboring peers.Such queries are based on local filter query statistics,and require as less communication cost as possible,which makes it more difficult than the existing distributed k-NN queries.Especially,we hope to reduce candidate peers and degrade communication cost.In this paper,we propose an efficient pruning technique to minimize the number of candidate peers to be processed to answer the k-NN queries.Our approach is especially suitable for continuous k-NN queries when updating peers,including changing ranges of peers,dynamically leaving or joining peers,and updating data in a peer. In addition,simulation results show that the proposed approach outperforms the existing Minimum Bounding Rectangle (MBR.)-based query approaches,especially for continuous queries.  相似文献   

11.
Many RDF systems support reasoning with Datalog rules via materialisation, where all conclusions of RDF data and the rules are precomputed and explicitly stored in a preprocessing step. As the amount of RDF data used in applications keeps increasing, processing large datasets often requires distributing the data in a cluster of shared-nothing servers. While numerous distributed query answering techniques are known, distributed materialisation is less well understood. In this paper, we present several techniques that facilitate scalable materialisation in distributed RDF systems. First, we present a new distributed materialisation algorithm that aims to minimise communication and synchronisation in the cluster. Second, we present two new algorithms for partitioning RDF data, both of which aim to produce tightly connected partitions, but without loading complete datasets into memory. We evaluate our materialisation algorithm against two state-of-the-art distributed Datalog systems and show that our technique offers competitive performance, particularly when the rules are complex. Moreover, we analyse in depth the effects of data partitioning on reasoning performance and show that our techniques offer performance comparable or superior to the state of the art min-cut partitioning, but computing the partitions requires considerably less time and memory.  相似文献   

12.
A nearest neighbor (NN) query, which returns the most similar object to a user-specified query object, plays an important role in a wide range of applications and hence has received considerable attention. In many such applications, e.g., sensor data collection and location-based services, objects are inherently uncertain. Furthermore, due to the ever increasing generation of massive datasets, the importance of distributed databases, which deal with such data objects, has been growing. One emerging challenge is to efficiently process probabilistic NN queries over distributed uncertain databases. The straightforward approach, that each local site forwards its own database to the central server, is communication-expensive, so we have to minimize communication cost for the NN object retrieval. In this paper, we focus on two important queries, namely top-k probable NN queries and probabilistic star queries, and propose efficient algorithms to process them over distributed uncertain databases. Extensive experiments on both real and synthetic data have demonstrated that our algorithms significantly reduce communication cost.  相似文献   

13.
The Semantic Web’s promise of web-wide data integration requires the inclusion of legacy relational databases,1 i.e. the execution of SPARQL queries on RDF representation of the legacy relational data. We explore a hypothesis: existing commercial relational databases already subsume the algorithms and optimizations needed to support effective SPARQL execution on existing relationally stored data. The experiment is embodied in a system, Ultrawrap, that encodes a logical representation of the database as an RDF graph using SQL views and a simple syntactic translation of SPARQL queries to SQL queries on those views. Thus, in the course of executing a SPARQL query, the SQL optimizer uses the SQL views that represent a mapping of relational data to RDF, and optimizes its execution. In contrast, related research is predicated on incorporating optimizing transforms as part of the SPARQL to SQL translation, and/or executing some of the queries outside the underlying SQL environment.Ultrawrap is evaluated using two existing benchmark suites that derive their RDF data from relational data through a Relational Database to RDF (RDB2RDF) Direct Mapping and repeated for each of the three major relational database management systems. Empirical analysis reveals two existing relational query optimizations that, if applied to the SQL produced from a simple syntactic translations of SPARQL queries (with bound predicate arguments) to SQL, consistently yield query execution time that is comparable to that of SQL queries written directly for the relational representation of the data. The analysis further reveals the two optimizations are not uniquely required to achieve a successful wrapper system. The evidence suggests effective wrappers will be those that are designed to complement the optimizer of the target database.  相似文献   

14.
15.
16.
Accompanying the growth of the Internet, computers throughout the world can connect to each other and exchange information, increasing the convenience and efficiency of information-based work. The advent of data-sharing applications, such as Napster and Gnutella, has made peer-to-peer (P2P) systems popular for widespread exchange of resources and voluminous information between millions of users. In recent years, research issues associated with P2P systems have been discussed widely. To resolve the file-availability problem and improve the workload, a method called the Distributed Hash Table (DHT) has been proposed. However, DHT-based systems in structured architectures cannot support efficient queries, such as a similarity query, range query, and partial-match query, due to the characteristics of the hash function. This study presents a novel scheme that supports filename partial-matches in structured P2P systems. The proposed approach supports complex queries and guarantees result quality. Experimental results demonstrate the effectiveness of the proposed approach.  相似文献   

17.
Array partitioning is an important research problem in array management area, since the partitioning strategies have important influence on storage, query evaluation, and other components in array management systems. Meanwhile, compression is highly needed for the array data due to its growing volume. Observing that the array partitioning can affect the compression performance significantly, this paper aims to design the efficient partitioning method for array data to optimize the compression performance. As far as we know, there still lacks research efforts on this problem. In this paper, the problem of array partitioning for optimizing the compression performance (PPCP for short) is firstly proposed. We adopt a popular compression technique which allows to process queries on the compressed data without decompression. Secondly, because the above problem is NP-hard, two essential principles for exploring the partitioning solution are introduced, which can explain the core idea of the partitioning algorithms proposed by us. The first principle shows that the compression performance can be improved if an array can be partitioned into two parts with different sparsities. The second principle introduces a greedy strategy which can well support the selection of the partitioning positions heuristically. Supported by the two principles, two greedy strategy based array partitioning algorithms are designed for the independent case and the dependent case respectively. Observing the expensive cost of the algorithm for the dependent case, a further optimization based on random sampling and dimension grouping is proposed to achieve linear time cost. Finally, the experiments are conducted on both synthetic and real-life data, and the results show that the two proposed partitioning algorithms achieve better performance on both compression and query evaluation.  相似文献   

18.
Recent years have witnessed the development of large knowledge bases (KBs). Due to the lack of information about the content and schema semantics of KBs, users are often not able to correctly formulate KB queries that return the intended result. In this paper, we consider the problem of failing RDF queries, i.e., queries that return an empty set of answers. Query relaxation is one cooperative technique proposed to solve this problem. In the context of RDF data, several works proposed query relaxation operators and ranking models for relaxed queries. But none of them tried to find the causes of an RDF query failure given by Minimal Failing Subqueries (MFSs) as well as successful queries that have a maximal number of triple patterns named Ma \(\underline{x}\) imal Succeeding Subqueries (XSSs). Inspired by previous work in the context of relational databases and recommender systems, we propose two complementary approaches to fill this gap. The lattice-based approach (LBA) leverages the theoretical properties of MFSs and XSSs to efficiently explore the subquery lattice of the failing query. The matrix-based approach computes a matrix that records alternative answers to the failing query with the triple patterns they satisfy. The skyline of this matrix directly gives the XSSs of the failing query. This matrix can also be used as an index to improve the performance of LBA. The practical interest of these two approaches are shown via a set of experiments conducted on the LUBM benchmark and a comparative study with baseline and related work algorithms.  相似文献   

19.
20.
Evolutionary Algorithms for Allocating Data in Distributed Database Systems   总被引:2,自引:0,他引:2  
A major cost in executing queries in a distributed database system is the data transfer cost incurred in transferring relations (fragments) accessed by a query from different sites to the site where the query is initiated. The objective of a data allocation algorithm is to determine an assignment of fragments at different sites so as to minimize the total data transfer cost incurred in executing a set of queries. This is equivalent to minimizing the average query execution time, which is of primary importance in a wide class of distributed conventional as well as multimedia database systems. The data allocation problem, however, is NP-complete, and thus requires fast heuristics to generate efficient solutions. Furthermore, the optimal allocation of database objects highly depends on the query execution strategy employed by a distributed database system, and the given query execution strategy usually assumes an allocation of the fragments. We develop a site-independent fragment dependency graph representation to model the dependencies among the fragments accessed by a query, and use it to formulate and tackle data allocation problems for distributed database systems based on query-site and move-small query execution strategies. We have designed and evaluated evolutionary algorithms for data allocation for distributed database systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号