首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Using a multidimensional approach, the author discovers a large family of rotationally invariant trellis-coded M-PSK (M-ary shift keying) schemes, M⩾8, with nominal coding gains ranging from 3 to 5 dB and with bandwidth requirements the same as, or even less than, those of uncoded M/2-PSK schemes at the same information bit rate. The rotationally invariant schemes have performance and complexities comparable to the best known nonrotationally-invariant trellis-coded two-dimensional M-PSK schemes. Computer simulation results for these schemes, assuming an additive white-Gaussian-noise (AWGN) channel, are reported  相似文献   

2.
Multistage decoding of multilevel block multilevel phase-shift keying (M-PSK) modulation codes for the additive white Gaussian noise (AWGN) channel is investigated. Several types of multistage decoding, including a suboptimum soft-decision decoding scheme, are devised and analyzed. Upper bounds on the probability of an incorrect decoding of a code are derived for the proposed multistage decoding schemes. Error probabilities of some specific multilevel block 8-PSK modulation codes are evaluated and simulated. The computation and simulation results for these codes show that with multistage decoding, significant coding gains can be achieved with large reduction in decoding complexity. In one example, it is shown that the difference in performance between the proposed suboptimum multistage soft-decision decoding and the single-stage optimum decoding is small, only a fraction of a dB loss in SNR at the block error probability of 10-6  相似文献   

3.
A concatenated coded modulation scheme is presented for error control in data communications. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary phase-shift keying (PSK) modulation. Error performance of the scheme is analyzed for an additive white Gaussian noise (AWGN) channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner-code and a relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The scheme is particularly effective for high-speed satellite communications for large file transfer where high reliability is required. A simple method is also presented for constructing block codes for M-ary PSK modulation. Soome short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft-decision Viterbi decoding algorithm. Furthermore, some of these codes are phase invariant under multiples of 45° rotation  相似文献   

4.
Recently, linear codes over ZM (the ring of integers mod M) have been presented that are matched to M -ary phase modulation. The general problem of matching signal sets to generalized linear algebraic codes is addressed based on these codes. A definition is given for the notion of matching. It is shown that any signal set in N-dimensional Euclidean space that is matched to an abstract group is essentially what D. Slepian (1968) called a group code for the Gaussian channel. If the group is commutative, this further implies that any such signal set is equivalent to coded phase modulation with linear codes over ZM. Some further results on such signal sets are presented, and the signal sets matched to noncommutative groups and the linear codes over such groups are discussed  相似文献   

5.
A simple technique employing linear block codes to construct (d,k) error-correcting block codes is considered. This scheme allows asymptotically reliable transmission at rate R over a BSC channel with capacity CBSC provided R Cd,k-(1+CBSC), where Cd,k is the maximum entropy of a (d,k ) source. For the same error-correcting capability, the loss in code rate incurred by a multiple-error correcting (d,k) code resulting from this scheme is no greater than that incurred by the parent linear block code. The single-error correcting code is asymptotically optimal. A modification allows the correction of single bit-shaft errors as well. Decoding can be accomplished using off-the-shelf decoders. A systematic (but suboptimal) encoding scheme and detailed case studies are provided  相似文献   

6.
Stability analysis of multidevice amplifiers is made on a generalized circuit comprising two n-ports with S-matrices S (active devices) and S' (passive networks) connected at n interface ports. Open-loop transfer functions defined for a signal-flow graph and its (n-1) subgraphs of incident and reflected waves at the interface ports are expressed in terms of det Mn and its minors, where Mn=S'S-In and In is the n×n identity matrix. it is shown that the Nyquist plots of the n transfer functions completely characterize the number of right-half complex-frequency-plane zeros of det Mn, and hence the amplifier stability. Insertion of an ideal circulator and isolators at the interface ports enables one to calculate the Nyquist plots and voltage distributions of possible instabilities using commercially available linear circuit simulators. Numerical simulations for two types of parallel-operated GaAs FET amplifiers are performed to verify the usefulness of the analysis in design-phase check of multidevice amplifier stability  相似文献   

7.
Protection of images that are encoded using subband coding from channel error is addressed. In this scheme the low-pass subband is encoded using DPCM (differential pulse-code modulation), and the other subbands are encoded using a scalar quantizer. The quantizers are all Lloyd-Max quantizers, from which the representation levels have fixed length codewords. First, considering only single errors in each codeword, a channel error distortion measure is derived for each quantizer, that is, for each subband. Codewords are assigned to the quantizer representation levels, yielding a low value of the distortion measure. Next, sets Sij consisting of the jth bit from subband i are formed. Each set S ij is assigned a particular BCH code Cij. An algorithm that optimally assigns BCH codes Cij to each set Sij, based on a channel error distortion measure for the entire image, is derived. The protection scheme is adaptive, because each set of bits within each subband can be assigned a different error protection code. Examples show that this approach is preferable to assigning equal error protection codes to each set of bits. It is shown that in the case of a channel error probability of 10 -3, only 5% to 10% extra bits are needed for adequate channel error protection  相似文献   

8.
Andrew  R. 《Electronics letters》1988,24(20):1257-1258
A t-EC/AUED code is constructed by appending a single check symbol from an alphabet S to each word of an n-bit binary t-EC code of even weight. Conditions are derived for the construction of S and a procedure is given which, for some values of t, n, leads to codes with fewer check bits than known codes with equivalent properties  相似文献   

9.
The asymptotic (M→∞) probability of symbol error Pe,m for M-ary orthogonal modulation in a Nakagami-m fading channel is given by the incomplete gamma function P(m, mx) where x=In 2/(Eb/N0) and Eb is the average energy per bit. For large signal-to-noise ratio this leads to a channel where the probability of symbol error varies as the inverse mth power of Eb/N0. These channels exist for all m⩾1/2. The special case of m=1 corresponds to Rayleigh fading, an inverse linear channel  相似文献   

10.
The normality of binary codes is studied. The minimum cardinality of a binary code of length n with covering radius R is denoted by K(n,R). It is assumed that C is an (n,M)R code, that is, a binary code of length n with M codewords and covering radius R. It is shown that if C is an (n,M)1 code, then it is easy to find a normal (n ,M)1 code by changing C in a suitable way, and that all the optimal (n,M)1 codes (i.e. those for which M=K(n,1)) are normal and their every coordinate is acceptable. It is shown that if C is an abnormal (n,M) code, then n⩾9, and an abnormal (9118)1 code which is the smallest abnormal code known at present, is constructed. Lower bounds on the minimum cardinality of a binary abnormal code of length n with covering radius 1 are derived, and it is shown that if an (n,M)1 code is abnormal, then M⩾96  相似文献   

11.
An explicit formula is derived that enumerates the complete weight distribution of an (n, k, d) linear code using a partially known weight distribution. An approximation formula for the weight distribution of q-ary linear (n, k , d) codes is also derived. It is shown that, for a given q-ary linear (n, k, d) code, the ratio of the number of codewords of weight u to the number of words of weight u approaches the constant Q=q -(n-k) as u becomes large. The error term is a decreasing function of the minimum weight of the dual. The results are also valid for nonlinear (n, M, d) codes with the minimum weight of the dual replaced by the dual distance  相似文献   

12.
The construction of finite-state codes between constrained systems called sofic systems introduced by R. Karabed and B. Marcus (1988) is continued. It is shown that if Σ is a shift of finite type and S is a sofic system with k/n=h(S )/h(Σ), where h denotes entropy, there is a noncatastrophic finite-state invertible code from Σ to S at rate k:n if Σ and S satisfy a certain algebraic condition involving dimension groups, and Σ and S satisfy a certain condition on their periodic points. Moreover, if S is an almost finite type sofic system, then the decoder can be sliding block  相似文献   

13.
A fast algorithm for searching a tree (FAST) is presented for computing the distance spectrum of convolutional codes. The distance profile of a code is used to limit substantially the error patterns that have to be searched. The algorithm can easily be modified to determine the number of nonzero information bits of an incorrect path as well as the length of an error event. For testing systematic codes, a faster version of the algorithm is given. FAST is much faster than the standard bidirectional search. On a microVAX, d=27 was verified for a rate R=1/2, memory M=25 code in 37 s of CPU time. Extensive tables of rate R=1/2 encoders are given. Several of the listed encoders have distance spectra superior to those of any previously known codes of the same rate and memory. A conjecture than an R=1/2 systematic convolutional code of memory 2M will perform as well as a nonsystematic convolutional code of memory M is given strong support  相似文献   

14.
A design technique to reduce the search time for trellis codes with multilevel phase modulation is presented. Codes are constructed by connecting trellis diagrams for codes with fewer states in parallel. For example, an N-state code can be constructed by connecting two N/2-state codes. The way in which the embedded codes are connected increases the upper limit on minimum free distance otherwise imposed by parallel transitions between states. In some cases, this technique can reduce the number of codes in a code search by a factor of approximately 2ν, the number of coder states. A computer search incorporating this technique for eight-level amplitude modulation (8-AM) codes having 211 and 212 states produced codes with greater minimum free distance than reported previously (i.e. greater than 6 dB coding gain). New eight-level phase-shift-keying (8-PSK) codes, which have a different structure from previously reported codes, are also presented  相似文献   

15.
A model for the semi-analytic performance evaluation of digital satellite radio links in the presence of interference on both the uplink and the downlink is presented. Error probability on the linear portion of the link is estimated using simulation to determine the moments of the interfering signal samples and analyzing the effect of an undetermined phase difference among carriers. The nonlinear portion of the link is modeled using a series expansion of the nonlinearity; the output terms are then separated, allowing construction of the conditional probability densities required in the error probability computation. Results are carried out for M-QAM (M-ary quadrature amplitude modulation) and M-PSK (M-ary phase-shift keying) modulation systems  相似文献   

16.
It is shown that for worst-case partial-band jamming, the error probability performance (for fixed Eb/NI) becomes worse with increasing M for (M>16). The asymptotic probability-of-error is not zero for any Eb/N I(>ln 2), but decreases inverse linearly with respect to it. In the fading case, the error-probability performance (for fixed Eb/N0) improves with M for noncoherent detection, but worsens with M for coherent detection. For large Eb/N0 the performance of the Rayleigh fading channel asymptotically approaches the same limit as the worst case partial-band jammed channel. However, for values of M at least up to 4096, the partial-band jammed channel does better. While it is unlikely that an M-ary orthogonal signal set with M>1024 will be used in a practical situation, these results suggest an important theoretical problem; namely, what signal set achieves reliable communication  相似文献   

17.
On multilevel block modulation codes   总被引:1,自引:0,他引:1  
The multilevel technique for combining block coding and modulation is investigated. A general formulation is presented for multilevel modulation codes in terms of component codes with appropriate distance measures. A specific method for constructing multilevel block modulation codes with interdependency among component codes is proposed. Given a multilevel block modulation code C with no interdependency among the binary component codes, the proposed method gives a multilevel block modulation code C' that has the same rate as C, a minimum squared Euclidean distance not less than that of C, a trellis diagram with the same number of states as that of C, and a smaller number of nearest neighbor codewords than that of C . Finally, a technique is presented for analyzing the error performance of block modulation codes for an additive white Gaussian noise (AWGN) channel based on soft-decision maximum likelihood decoding. Error probabilities of some specific codes are evaluated by simulation and upper bounds based on their Euclidean weight distributions  相似文献   

18.
The 1/f noise in normally-on MODFETs biased at low drain voltages is investigated. The experimentally observed relative noise in the drain current SI/I2 versus the effective gate voltage VG=VGS-Voff shows three regions which are explained. The observed dependencies are SI/I2VG m with the exponents m=-1, -3, 0 with increasing values of VG. The model explains m =-1 as the region where the resistance and the 1/f noise stem from the 2-D electron gas under the gate electrode; the region with m=0 at large VG or VGS≅0 is due to the dominant contribution of the series resistance. In the region at intermediate VG , m=-3, the 1/f noise stems from the channel under the gate electrode, and the drain-source resistance is already dominated by the series resistance  相似文献   

19.
The author investigates the properties of minimal distance lexicographic codes, or lexicode, over the ordered infinite alphabet N={0,1,2…}. The author presents a method for computing the basis of such a code. It is shown that any lexicographic code S with minimal distance d has a unique basis where each basis vector is a one followed by a string of zeros, followed by d-1 nonzero digits aij. Furthermore, the matrix A=(aij) has no singular minors over the nim-field. The dual code when S has finite length is also computed. The author develops a systematic approach to determine which words belong to these lexicodes  相似文献   

20.
Two DC-free codes are presented with distance 2d, b ⩾1 length 2n+2r(d-1) for d⩽3 and length 2n+2r(d-1)(2d -1) for d>3, where r is the least integer ⩾log2 (2n+1). For the first code l=4, c=2, and the asymptotic rate of this code is 0.7925. For the second code l=6, c=3, and the asymptotic rate of this code is 0.8858. Asymptotically, these rates achieve the channel capacity. For small values of n these codes do not achieve the best rate. As an example of codes of short length with good rate, the author presents a (30, 10, 6, 4) DC-free block code with 221 codewords. A construction is presented for which from a given code C 1 of length n, even weight, and distance 4, the author obtains a (4n, l, c, 4) DC-free block code C2, where l is 4, 5 or 6, and c is not greater than n+1 (but usually significantly smaller). The codes obtained by this method have good rates for small lengths. The encoding and decoding procedures for all the codes are discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号