首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Lead-free piezoelectric ceramics have received attention because of increasing interest in environmental protection. Niobate ceramics such as NaNbO3 and KNbO3 have been studied as promising Pb-free piezoelectric ceramics, but their sintering densification is fairly difficult. In the present study, highly dense Na0.5K0.5NbO3 ceramics were prepared using spark plasma sintering (SPS). Although the SPS temperature was as low as 920°C, the density of the Na0.5K0.5NbO3 solid solution ceramics was raised to 4.47 g/cm3 (>99% of the theoretical density). After post-annealing in air, reasonably good ferroelectric and piezoelectric properties were obtained in the Na0.5K0.5NbO3 ceramics with submicron grains. The crystal phase of the Na0.5K0.5NbO3 has an orthorhombic structure. The Curie temperature is 395°C and the piezoelectric parameter ( d 33) of the Na0.5K0.5NbO3 ceramics reached 148 pC/N.  相似文献   

2.
A partial phase diagram for the system Na3AlF6-Li3AlF6 was constructed from DTA and X-ray diffraction measurements. A region of solid solution extends from Na3AlF6 to the limiting composition Na2LiAlF6. At compositions between Na1.5Li1.5AlF6 and NaLi2AlF6 a cubic phase resembling the mineral cryolithionite is stable over a narrow range of temperatures, which shifts progressively to higher temperatures with increasing lithium content. A single phase can be quenched from samples annealed within this range except near the ideal cryolithionite composition (Na1.5Li1.5AlF6) where the upper temperature limit is too low to permit recombination of two solid phases to cryolithionite even with prolonged annealing. Cryolithionite precipitated from aqueous solution, a sample of the mineral, and the solid solutions containing from 53 to 65 mole % Li3AlF6 have identical powder patterns except for differences of lattice constants. Solid solubility of Na3AlF6 in Li3AlF6 reaches 30 mole % at the eutectic temperature.  相似文献   

3.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− y )(Na0.5−0.5 x K0.5−0.5 x Li x )NbO3− y BiScO3 (  y =0.01, x= 0–0.06) have been prepared by an ordinary sintering process. The XRD analysis showed that the structure changes from orthorhombic to tetragonal with the increase of x (at y =0.01, abbreviated as KNNBSL100 x ). At room temperature, the polymorphic phase transition from the orthorhombic to the tetragonal phase was identified at approximately 0.02≤ x ≤0.04. The piezoelectric and ferroelectric properties were significantly enhanced. The temperature dependences of the relative permittivity revealed that the Curie temperature was increased with the addition of LiNbO3. These solid solution ceramics are promising as potential lead-free candidate materials.  相似文献   

4.
Microstructure and electrical properties of manganese oxide (MnO)-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 (NBBT) piezoceramics were investigated in this work. X-ray diffraction analysis shows that the suitable substitution of Mn ion into the B site induces the lattice distortion of perovskite NBBT: the solution limit is at 0.3 wt% MnO. Besides, it is observed that the sintering properties can be improved by adding a small amount of MnO, thus increasing the grain size and the relative density. Further, the temperature dependence of the dielectric permittivity of NBBT ceramics indicates that the MnO addition reconstructs the disorder array destroyed by joining BaTiO3 in the Na0.5Bi0.5TiO3 system due to the sizable radius of the B-site cations. Combining these effects of MnO addition, the optimal electrical properties were acquired for NBBT ceramic with addition of 0.30 wt% MnO. The excellent electrical properties of MnO-doped NBBT ceramics indicate its promising application in large displacement actuators.  相似文献   

5.
The sintering temperature of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 (NKN–BT) ceramics needs to be decreased below 1000°C to prevent Na2O evaporation, which can cause difficulties in poling and may eventually degrade their piezoelectric properties. NKN–BT ceramics containing CuO were well sintered at 950°C with grain growth. Poling was easy for all specimens. Densification and grain growth were explained by the formation of a liquid phase. The addition of CuO improved the piezoelectric properties by increasing the grain size and density. High piezoelectric properties of d 33=230 pC/N, k p=37%, and ɛ3T0=1150 were obtained from the specimen containing 1.0 mol% of CuO synthesized by the conventional solid-state method.  相似文献   

6.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− x )(Na0.5K0.5)NbO3– x BiScO3 (KNN–BS) ( x =0∼0.05) have been prepared by an ordinary sintering process. Single perovskite phase of KNN–BS exhibits an orthorhombic symmetry at x <0.015 and pseudocubic symmetry at x >0.02, separating by a MPB at 0.015≤ x ≤0.02. Piezoelectric and ferroelectric properties are significantly enhanced in the MPB, which are as follows: piezoelectric constant d 33=203 pC/N, planar coupling coefficient k p=0.36, remnant polarization P r=24.4 μC/cm2. These solid solution ceramics look promising as a potential lead-free candidate materials.  相似文献   

7.
Lead-free Na0.5K0.5NbO3 (NKN) piezoelectric ceramics were fairly well densified at a relatively low temperature under atmospheric conditions. A relative density of 96%–99% can be achieved by either using high-energy attrition milling or adding 1 mol% oxide additives. It is suggested that ultra-fine starting powders by active milling or oxygen vacancies and even liquid phases from B-site oxide additives mainly lead to improved sintering. Not only were dielectric properties influenced by oxide additives, such as the Curie temperature ( T c) and dielectric loss ( D ), but also the ferroelectricity was modified. A relatively large remanent polarization was produced, ranging from 16 μC/cm2 for pure NKN to 23 μC/cm2 for ZnO-added NKN samples. The following dielectric and piezoelectric properties were obtained: relative permittivity ɛ T 33 0 =570–650, planar mode electromechanical coupling factor, k p=32%–44%, and piezoelectric strain constant, d 33=92–117 pC/N.  相似文献   

8.
(1− x )(Na0.5K0.5)NbO3– x LiNbO3 [(1− x )NKN– x LN] ceramics were produced by the conventional solid-state sintering method, and their microstructure and piezoelectric properties were investigated. The formation of the liquid phase and K6Li4Nb10O30 second phase that were observed in the (1− x )NKN– x LN ceramics was explained by the evaporation of Na2O during the sintering. A morphotropic phase boundary (MPB) was observed in the specimens with 0.05< x <0.08. Promising piezoelectric properties were obtained for the specimens with x =0.07. Therefore, the piezoelectric properties of this 0.93NKN–0.07LN ceramic were further investigated and were found to be influenced by their relative density and grain size. In particular, grain size considerably affected the d 33 value. Two-step sintering was conducted at different temperatures to increase the grain size. Piezoelectric properties of d 33=240 (pC/N) and k p=0.35 were obtained for the 0.93NKN–0.07LN ceramics sintered at 1030°C and subsequently annealed at 1050°C.  相似文献   

9.
The dielectric properties of Na0.5Bi0.5TiO3 (NBT) -based composites incorporating silver particles prepared by sintering at a low temperature of ∼900°C are reported. The dielectric constant increases with the amount of metal silver particles in the measured frequency range (150 Hz to 1 MHz), and could be enhanced up to ∼20 times higher than that of pure NBT ceramics, which was ascribed to the effective electric fields developed between the dispersed particles in the matrix and the percolation effect. Further investigation revealed that the dielectric constant of the composites has weak frequency and temperature dependence (−50°C to +50°C).  相似文献   

10.
(1− x )(Na0.5K0.5)NbO3–(Bi0.5K0.5)TiO3 solid solution ceramics were successfully fabricated, exhibiting a continuous phase transition with changing x at room temperature from orthorhombic, to tetragonal, to cubic, and finally to tetragonal symmetries. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal ferroelectric phases was found at 2–3 mol% (Bi0.5K0.5)TiO3 (BKT), which brings about enhanced piezoelectric and electromechanical properties of piezoelectric constant d 33=192 pC/N and planar electromechanical coupling coefficient k p=45%. The MPB composition has a Curie temperature of 370°–380°C, comparable with that of the widely used PZT materials. These results demonstrate that this system is a promising lead-free piezoelectric candidate material.  相似文献   

11.
Lead-free piezoelectric Na x K1− x NbO3 ( x =20–80 mol%) ceramics were fabricated using spark plasma sintering at a low temperature (920°C). All the Na x K1− x NbO3 ceramics showed a similar orthorhombic phase structure, while the corresponding lattice parameters decreased from the KNbO3 side to the NaNbO3 side with increasing Na content. A discontinuous change in lattice parameter close to composition of 60 mol% Na indicated the presence of a transitional area that is similar to the morphotropic phase boundary (MPB) in Na x K1− x NbO3 ceramics. The sintered density of the Na x K1− x NbO3 ceramics decreased with increasing Na content, from a relative density of 99% for the K-rich side to 92% for the Na-rich side. The piezoelectric constant d 33 and planar mode electromechanical coupling coefficient k p showed a maximum value of 148 pC/N and 38.9%, respectively, due to the similar MPB effects in the PZT system.  相似文献   

12.
Textured 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) ceramics were fabricated by templated grain growth (TGG) using anisotropically shaped Na0.5Bi0.5TiO3 (NBT) templates. Platelet NBT was synthesized by the topochemical technique, using precursor Na0.5Bi4.5Ti4O15 (NBIT). The NBT particles have an average length of 10–15 μm and a thickness of 1 μm, which are suitable templates for obtaining textured ceramics (especially NBT-based ceramics) by the TGG process. This study revealed that the NBT templates are effective in inducing grain orientation in NBT–6BT ceramics. For NBT–6BT ceramics textured with 5 vol% NBT templates, a Lotgering factor of 0.87 and a d 33 of 299 pC/N are given.  相似文献   

13.
The sintering and electrical characteristics of La-modified Na1/2Bi1/2TiO3 (NBT) was investigated from a defect structure viewpoint. To reveal the role of cation vacancies, two series of ceramics, with different cation vacancies, were processed to compensate the excess positive charge of lanthanum ions. In a region of complete solid solution, the grain size of NBLT-B {[(Na0.5Bi0.5)1− x La x ]Ti1−0.25 x O3} was smaller than that of NBLT-A {[(Na0.5Bi0.5)1−1.5 x La x ]TiO3} and densification was enhanced more effectively in NBLT-B. With the aid of thermoelectric power, electric conductivity, and electrotransport measurements, it was found that different sintering behaviors between NBLT-A and NBLT-B specimens were related to the change in the type of cation vacancies present and that lanthanum ion–cation vacancy pairs played an important role in reducing the grain growth and enhancing the densification process.  相似文献   

14.
As a candidate for lead-free piezoelectric materials, Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 (NKN–5LT) ceramics were developed by a conventional sintering process. The sintering temperature was lowered by adding Li2O as a sintering aid. Abnormal grain growth in NKN–5LT ceramics was observed with varying Li2O content. This grain-growth behavior was explained in terms of interface reaction-controlled nucleation and growth. In the 1 mol% Li2O excess NKN–5LT samples sintered at 1000°C for 4 h in air, the electromechanical coupling factor and the piezoelectric constant of NKN–5LT ceramics were found to reach the highest values of 0.37 and 250 pC/N, respectively.  相似文献   

15.
(1− x )(Na0.5K0.5)NbO3– x AgSbO3 lead-free piezoelectric ceramics were prepared by normal sintering. The effects of the AgSbO3 on the phase structure and piezoelectric properties of the ceramics were systematically studied. These results show that the AgSbO3-modified (K0.50Na0.50)NbO3 lead-free piezoelectric ceramics form stable solution with orthorhombic structure, and the Curie temperature and the polymorphic phase transition of the ceramics decreased with increasing AgSbO3. The result shows that the piezoelectric properties of the ceramics strongly depend on the AgSbO3. The ceramics with x =0.05 possess optimum properties ( d 33=192 pC/N, k p=43%, T c=348°C, T o−t =145°C, ɛr∼632, and tan δ∼3.5%). These results indicate that the ceramic is a promising candidate material for lead-free piezoelectric ceramics.  相似文献   

16.
Lead-free piezoelectric ceramics in the system 0.95Na0.5K0.5NbO3–0.05LiTaO3 were modified with ≤1 mol% MnO. Maximum densities occurred at a sintering temperature of 1050°C. Characteristic changes in the relative intensity of X-ray diffraction peaks were consistent with Mn ions substituting on the perovskite lattice to produce a change from orthorhombic to a mixture of tetragonal and orthorhombic phases. Grain growth during secondary recrystallization was also affected, leading to increased grain sizes. The dielectric constant increased from ∼600 in unmodified ceramics to ∼1040 in ceramics prepared with 0.5 mol% MnO.  相似文献   

17.
Phase equilibria were studied for the system Na2SiO:rLi2SiO3. The 2 end-member metasilicates show limited mutual solid solubility with the (Na2-χLiχ)SiO3 solid solutions being particularly extensive at solidus temperatures (0 x 1.06). Ordering of the latter solid solution occurs at the NaLiSiO;) composition with asupercellx= 6asubcell During cooling of the solid solutions, metastable phase transformations occur; a twinned monoclinic metastable phase, low (Na, Li)2SiO3, has been characterized.  相似文献   

18.
Subsolidus phase relations in the system Na2O-Bi2O3-TiO2 at 1000°C were investigated by solid-state reaction techniques and X-ray diffraction methods. Five ternary compounds were observed in the system: Na0.5Bi4.5Ti4O15; Na0.5Bi0.5TiO3; a cubic pyrochlore solid solution composed of xNa2O.25Bi2O3.(75−;x) TiO2 where x is 2.5 to 3.75; a new compound Na0.5Bi8.5Ti7O27 indexed with the orthorhombic cell of a = 5.45, b = 5.42, and c = 36.8 Å; and an unidentified phase with the probable composition NaBiTi6O14.  相似文献   

19.
The 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 (0.95NKN–0.05ST) ceramics formed in this study had a porous microstructure with small grains and low piezoelectric properties due to their low density. However, when a small amount of Na2O was intentionally subtracted from the 0.95NKN–0.05ST ceramics, a liquid phase was formed, which led to increased density and grain size. Piezoelectric properties were also improved for the Na2O-subtracted 0.95NKN–0.05ST ceramics. The increased density and grain size were responsible for the enhancement of the piezoelectric properties. In particular, the 0.95(Na0.49K0.5)NbO2.995–0.05ST ceramics showed high piezoelectric properties of d 33=220, k p=0.4, Q m=72, and ɛ3To=1447, thereby demonstrating their promising potential as a candidate material for application to lead-free piezoelectric ceramics.  相似文献   

20.
Microstructure development in Bi0.5(Na0.5K0.5)0.5TiO3 prepared by a reactive-templated grain growth process was dependent on the sizes of platelike Bi4Ti3O12 (BiT) and equiaxed TiO2 particles used as starting materials. Calcined compacts were composed of large, platelike template grains and small, equiaxed matrix grains, the sizes of which were determined by those of the BiT and TiO2 particles, respectively. Texture was developed by the growth of template grains at the expense of matrix grains during sintering, and a new mechanism of grain growth was proposed on the basis of microstructure observation. The grain growth rate was determined by the template and matrix grain sizes, and a dense ceramic with extensive texture was obtained using small BiT and TiO2 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号