首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical-looping combustion (CLC) has emerged as a promising option for CO2 capture because this gas is inherently separated from the other flue gas components and thus no energy is expended for the separation. This technology would have some advantages if it could be adapted for its use with coal as fuel. In this sense, a process integrated by coal gasification and CLC could be used in power plants with low energy penalty for CO2 capture. This work presents the results obtained in the combustion of syngas as fuel with a Ni-based oxygen carrier prepared by impregnation in a CLC plant under continuous operation. The effect on the oxygen carrier behaviour and the combustion efficiency of several operating conditions was determined in the continuous CLC plant. High combustion efficiencies (~99%), close to the values limited by thermodynamics, were reached at oxygen carrier-to-fuel ratios higher than 5. The temperature in the FR had a significant influence, although high efficiencies were obtained even at 1073 K. The syngas composition had small effect on the combustion, obtaining high and similar efficiencies with syngas fuels of different composition, even in the presence of high CO concentrations. The low reactivity of the oxygen carrier with CO seemed to indicate that the water gas shift reaction acts as an intermediate step in the global reaction of the syngas in a continuous CLC plant. Neither agglomeration nor carbon deposition problems were detected during 50 h of continuous operation in the prototype. The obtained results showed that the impregnated Ni-based oxygen carrier could be used in a CLC plant for the combustion of syngas produced in an integrated gasification combined cycle (IGCC).  相似文献   

2.
《Fuel》2007,86(7-8):1036-1045
Chemical-looping combustion (CLC) is an attractive technology to decrease greenhouse gas emissions affecting global warming, because it is a combustion process with inherent CO2 separation and therefore without needing extra equipment for CO2 separation and low penalty in energy demand. The CLC concept is based on the split of a conventional combustion of gas fuel into separate reduction and oxidation reactions. The oxygen transfer from air to fuel is accomplished by means of an oxygen carrier in the form of a metal oxide circulating between two interconnected reactors. A Cu-based material (Cu14Al) prepared by impregnation of γ-Al2O3 as support with two different particle sizes (0.1–0.3 mm, 0.2–0.5 mm) was used as an oxygen carrier for a chemical-looping combustion of methane. A 10 kWth CLC prototype composed of two interconnected bubbling fluidized bed reactors has been designed, built in and operated at 800 °C during 100 h for each particle size. In the reduction stage full conversion of CH4 to CO2 and H2O was achieved using oxygen carrier-to-fuel ratios above 1.5. Some CuO losses as the active phase of the CLC process were detected during the first 50 h of operation, mainly due to the erosion of the CuO present in external surface of the alumina particles. The high reactivity of the oxygen carrier maintained during the whole test, the low attrition rate detected after 100 h of operation, and the absence of any agglomeration problem revealed a good performance of these CuO-based materials as oxygen carriers in a CLC process.  相似文献   

3.
《Fuel》2007,86(7-8):1021-1035
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors, an air reactor and a fuel reactor. The oxygen demanded in the fuel combustion is supplied by a solid oxygen carrier, which circulates between both reactors. Fuel gas and air are never mixed and pure CO2 can be obtained from the flue gas exit. This paper presents the results from the use of an iron-based oxygen-carrier in a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. Natural gas or syngas was used as fuel, and the thermal power was between 100 and 300 W. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated for all tests and stable conditions were maintained during the combustion. The same particles were used during 60 h of hot fluidization conditions, whereof 40 h with combustion. The combustion efficiency of syngas was high, about 99% for all experimental conditions. However, in the combustion tests with natural gas, there was unconverted methane in the exit flue gases. Higher temperature and lower fuel flows increase the combustion efficiency, which ranged between 70% and 94% at 1123 K. No signs of agglomeration or mass loss were detected, and the crushing strength of the oxygen carrier particles did not change significantly. Complementary experiments in a batch fluidized bed were made to compare the reactivity of the oxygen carrier particles before and after the 40 h of operation, but the reactivity of the particles was not affected significantly.  相似文献   

4.
《Fuel》2006,85(12-13):1631-1641
Chemical-looping reforming is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. This paper describes continuous chemical-looping reforming of natural gas in a laboratory reactor consisting of two interconnected fluidized beds. Particles composed of 60 wt% NiO and 40 wt% MgAl2O4 are used as bed material, oxygen carrier and reformer catalyst. There is a continuous circulation of particles between the reactors. In the fuel reactor, the particles are reduced by the fuel, which in turn is partially oxidized to H2, CO, CO2 and H2O. In the air reactor the reduced oxygen carrier is reoxidized with air. Complete conversion of natural gas was achieved and the selectivity towards H2 and CO was high. In total, 41 h of reforming were recorded. Formation of solid carbon was noticed for some cases. Adding 25 vol% steam to the natural gas reduced or eliminated the carbon formation.  相似文献   

5.
The feasibility of using three different solid fuels in chemical-looping combustion (CLC) has been investigated using NiO as oxygen carrier. A laboratory fluidized-bed reactor system for solid fuel was used, simulating a chemical-looping combustion system by exposing the sample to alternating reducing and oxidizing conditions. In each reducing phase 0.2 g of fuel was added to the reactor containing 20 g oxygen carrier. The experiments were performed at 970 °C. Compared to previously published results with other oxygen carriers the reactivity of the used Ni-particles was considerably lower for the high-sulphur fuel and higher for the low-sulphur fuel. Much more unconverted CO was released and the fuel conversion was much slower for high-sulphur fuel such as petroleum coke, suggesting that the nickel-based oxygen carrier was deactivated by the presence of sulphur. The NiO particles also showed good reactivity with methane and a syngas mixture of 50% H2 and 50% CO. For all experiments the oxygen carrier showed good fluidizing properties without any signs of agglomeration.  相似文献   

6.
The catalytic performances of Co/MgO catalysts for the steam reforming of naphthalene were investigated. The results of characterizations (TPR, XRD, CO adsorption, and CO-TPD) showed that large-sized Co metal particles were formed over the catalysts pre-calcined at 873 K with high Co loading via reduction of Co3O4 and MgCo2O4 phases. A few Co metal particles were obtained over the catalysts pre-calcined at 1173 K with all Co loading values after reduction.The catalytic performances data showed that 12 wt.% Co/MgO catalyst pre-calcined at 873 K exhibited the best catalytic performance (conv., 23%, 3 h) for the steam reforming of naphthalene among the catalysts tested in this study, due to the existence of Co metal and the low amounts of coke deposition. On the other hand, the data also revealed that the reaction of steam reforming of naphthalene proceeds over all Co-loaded catalyst pre-calcined at 1173 K initially; however, the deposition of the polymer of CnHm radicals and the oxidation of catalysts by H2O led to the decrease of activity.It should be noted that 12 wt.% Co/MgO catalyst pre-calcined at 873 K showed high and stable activity under the low steam/carbon mole ratio (0.6), with H2 and CO2 as main products. These two excellent advantages serve to increase the overall biomass gasification system energy efficiency and allow using the product gas for fuel cell system. Thus, Co catalyst is a promising system for the steam reforming of naphthalene derived from biomass gasification as a second fixed catalytic bed.  相似文献   

7.
Chemical looping combustion (CLC) uses an oxygen carrier circulating between an air and a fuel reactor to replace direct burning of fuels in air. The very low energy penalty for CO2 separation in CLC gives it the potential to become an important technology on the way to a CO2 neutral energy supply. In this work, the influence of the particle size of coal on the rate of reaction of the coal was investigated in a bed of oxygen carrier. In order to do this, a method to quench the reaction of coal with oxygen carriers at a specified time and measure the particle size distribution of the remaining coal was developed. Three size fractions of coal were used in the experiments: 90–125, 180–212 and 250–355 μm. Particle size distributions of the fuel show a decrease in particle size with time. The influence of devolatilisation of the coal on the coal particle size was measured, showing that coal particles do not break in the fluidized bed reactor used for the experiments. Reaction rates based on measurements of gas phase concentrations of CO2, CO and CH4 showed that the reaction rate is independent of the particle size. These results are in line with literature findings, as studies have shown that carbon gasification is size-independent at conditions similar to those in the performed CLC experiments.  相似文献   

8.
The retention of SO2 on CaO/activated carbon sorbents is studied. The effect of several variables such as the reaction temperature, partial pressure of SO2 for different calcium loads, and O2 presence are analysed. Additionally, the regeneration and reutilization of spent sorbents is investigated. In all cases presence of well-dispersed CaO in the sorbents improves SO2 retention in comparison with the activated carbon. In absence of O2 in the gas mixture, the amount of SO2 retained does not depend on the SO2 partial pressure in the range of partial pressures studied and, as expected, SO2 physisorption on the activated carbon support occurs at room temperature. SO2 retention occurs in surface CaO between 100 °C and 250 °C, and in bulk CaO above 300 °C. The total calcium conversion is reached at 500 °C. Above 550 °C calcium-catalysed carbon gasification by SO2 occurs. In presence of O2 in the gas mixture, the studied sorbents are very effective for SO2 removal. However, the SO2 retention process in presence of oxygen must be carried out at temperatures lower than 300 °C to avoid carbon gasification by O2. The thermal regeneration of the spent sorbents can be done under inert atmosphere (880 °C) with only 20% activity loss after the first regeneration cycle due to sintering and formation of CaS. No additional activity loss is detected in the subsequent cycles.  相似文献   

9.
《Fuel》2005,84(7-8):993-1006
In chemical looping combustion (CLC), a solid oxygen carrier circulates between two fluidised bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an inherent CO2 separation occurs. In this paper, CLC is integrated in a natural gas fired combined cycle (NGCC). In this system, nickel- and iron-based oxygen carriers are compared regarding the system's electrical and exergy efficiencies. Furthermore, the feasibility of CLC in two interconnected pressurised fluidised bed reactors (IPFBR) is studied for both oxygen carriers. The hypothetical layout plus dimensions of the IPFBR is presented for a capacity of 800 MW input of natural gas. Finally, top-firing is proposed as an option to overcome the apparent limitation in operating temperature of the reactor equipment and/or the oxygen carriers. The results indicate that there is no significant difference in the system's efficiency if both oxygen carriers could operate at the same temperature. However, CLC seems easier to be technically realised in an IPFBR with a nickel-based oxygen carrier.  相似文献   

10.
The study of the combustion process carried out in an oxygen-enriched atmosphere in a circulating fluidized bed (CFB) combustor is presented. The experiments were focused on fuel behavior in the conditions of increased oxygen concentration, at a different temperature and a different fuel load in the combustion chamber. The tests were performed in a laboratory-scale CFB combustor. Brown coal was used as the fuel. The values of variable parameters were in the following ranges: the oxygen concentration in the delivered stream of gas substrates (mixtures of O2 + N2 and O2 + CO2): 21 ÷ 60%; the combustor's temperature: 973 ÷ 1133 K; the mass of fuel portions: 4 ÷ 8 g. Based on the obtained data, carbon, sulfur and nitrogen conversion ratios were calculated.  相似文献   

11.
Efficiently using petroleum coke as fuel and reducing carbon emission meanwhile have become attractive in oil processing industry. The paper is focused on the application of Chemical Looping Combustion (CLC) with petroleum coke, with the purpose of investigating its combustion performance and effects of potassium. Some experiments were performed in a laboratory scale fluidized bed facility with a natural manganese-based oxygen carrier. Experimental results indicated that the coke conversion is very sensitive to reaction temperature. The present natural manganese-based oxygen carrier decorated by K has little effect on the improvement of coke conversion. XRD, SEM–EDX, and H2-TPR were adopted to characterize the reacted oxygen carrier samples. After being decorated by K, the oxygen carrier's capacity of transferring oxygen was decreased. A calcination temperature above the melting point of K2CO3 (891 °C) shows better oxygen transfer reactivity in comparison to the one calcined at a lower temperature. The natural oxygen carrier used in the work has a high content of Si, which can easily react with K to form K(FeSi2O6). Further, irrespective of reaction temperature, the coke conversion can be significantly enhanced by decorating the coke with K, with a demonstration of remarkably shorter reaction time, faster average coke gasification rate and higher average carbon conversion rate.  相似文献   

12.
《Fuel》2007,86(1-2):194-202
Experimental investigations of the influence of excess oxygen coefficient, H2O/coal mass ratio using high-temperature steam, mean mass diameter of pulverized coal and coal size fraction on basic characteristics of coal gasification were performed. Experiments were carried out on a laboratory scale (0.09 m i.d. × 1.5 m high) coal gasification apparatus with lignite type of coal. Influence of steam was realized through comparison of results obtained from experiments with (H2O/coal = 0.287 kg kg−1) and without steam addition (H2O/coal = 0.024 kg kg−1). High values of carbon conversion, obtained both for finely ground and for coarse pulverized coal points to the easiness of lignite gasification, i.e. to its high suitability for gasification.  相似文献   

13.
Pt–Sn/γ-Al2O3 catalysts with different Sn loadings were prepared by incipient wetness coimpregnation of γ-Al2O3 with H2PtCl6 and SnCl2. The Pt–Sn interaction was tested by temperature-programmed reduction and the catalytic activity was measured by cyclohexane dehydrogenation. The catalysts were coked by cyclopentane at 500 °C and totally or partially decoked with O2 at 450 °C or O3 at 125 °C. Coke deposits were studied by TPO and the catalytic activity of coked catalysts, partially or totally regenerated, by cyclohexane dehydrogenation.The TPO with O3 shows that coke combustion with O3 starts at a low temperature and has a maximum at 150 °C, that is a compensation between the increase of the burning rate and the rate of O3 decomposition when increasing the temperature. Meanwhile O2 burns coke with a maximum at 500 °C. When performing partial decoking with O3 (125 °C) the remaining coke is more oxygenated and easier to burn than the coke that remains after decoking with O2 (450 °C).After burning with O3 the dehydrogenation activity of the fresh catalyst is recovered, while after burning with O2 the activity is higher than that of the fresh catalyst. The burning with O3 practically does not change the original Pt–Sn interaction while the burning with O2 produces a decrease in the interaction, producing free Pt sites with higher dehydrogenation capacity.The differences in coke combustion with O3 and O2 are due to the different form of generation of activated oxygen, the species that oxidizes the coke. O3 is activated by the γ-Al2O3 support at low temperatures firstly eliminating coke from the support while O2 is activated by Pt at temperatures higher than 450 °C and the coke removal starts on the metal. Then, the recovery of the Pt catalytic activity as a function of coke elimination is faster with O2 than with O3.  相似文献   

14.
Decomposition of mono- to tetra-aromatics over charcoal was investigated under conditions such as temperature; 700–900 °C, inlet concentrations of aromatics, steam and H2; 7.5–15 g/Nm3, 0–15.5 vol% and 0–15.5 vol%, respectively, gas residence time within charcoal bed; 0.2 s, particle size of charcoal; 1.3–2.4 mm. The charcoal, with an initial surface area of 740 m2/g, was active enough to decompose naphthalene completely even at 750 °C. Aromatics with more rings per molecule were decomposed more rapidly. The aromatics were decomposed over the charcoal by coking rather than direct steam reforming irrespective of temperature and steam/H2 concentrations. The coking, i.e., carbon deposition from the aromatics, caused loss of micropores and thereby activity of the charcoal, while steam gasification of the charcoal/coke formed or regenerated micropores. Relationship between the overall rate of carbon deposition by the coking and gas formation by the gasification within the charcoal bed showed that progress of the gasification at a rate equivalent with or greater than that of the carbon deposition was necessary for maintaining the activity of the charcoal.  相似文献   

15.
In this study, the production of H2 utilizing chemical looping combustion (CLC) in a methane dry reformer assisted by H2 perm-selective membranes in a CLC-DRM configuration has been investigated. CLC via employment of a Mn-based oxygen carrier generates large amounts of heat in addition to providing CO2 as the raw material for the dry reforming (DR) reaction. The main advantage of the CLC-DRM configuration is the simultaneous capturing and consuming of CO2 as a greenhouse gas for H2 production.A steady state one dimensional heterogeneous catalytic reaction model is applied to analyze the performance and applicability of the proposed CLC-DRM configuration. Simulation results show that CH4 is completely consumed in the fuel reactor (FR) of the CLC-DRM and pure CO2 is captured by condensation of H2O. Also, CH4 conversion and H2 yield reach 73.46% and 1.459 respectively at the outlet of the DR side in the CLC-DRM. Additionally, 4562 kmol h−1 H2 is produced in the DR side of the CLC-DRM.Finally, results indicate that by increasing the FR feed temperature up to 880 K, CH4 conversion and H2 production are enhanced to 81.15% and 4790 kmol h−1 respectively.  相似文献   

16.
HyperCoal is an ultra clean coal with ash content <0.05 wt%. Catalytic steam gasification of HyperCoal was carried out with K2CO3 at 775–650 °C for production of H2 rich gas and synthesis gas. The catalytic gasification of HyperCoal showed nearly four times higher gasification rate than raw coal. The major gases evolved were H2: 63 vol%, CO: 6 vol% and CO2: 30 vol%. Catalyst was recycled for four times without any significant rate loss. The partial pressure of steam was varied from 0.5 atm to 0.05 atm in order to investigate the effect of steam pressure on H2/CO ratio. The H2/CO ratio decreased from 9.5 at 0.5 atm to 1.9 at 0.05 atm. No significant decrease in gasification rate was observed due to change in partial pressure of steam. Gasification rate decreased with decreasing temperature and become very slow at 650 °C. The preliminary results showed that HyperCoal, an ash less coal, could be a potential hydrocarbon resource for H2 and synthesis gas production at low temperature by catalytic steam gasification process.  相似文献   

17.
Sr2MgMo1  xVxO6  d (x = 0–0.2) materials with double perovskite structure were synthesized by sol–gel method, and studied for the possibility of being the anode of solid oxide fuel cells (SOFCs) with biogas as the direct fuel. The sample of Sr2MgMo0.95V0.05O6  d synthesized in 5%H2/Ar showed a conductivity higher than the samples with x > 0.05, but close to the sample without V. Besides, it showed better catalytic activity, stability, and H2S tolerance (up to 1% of H2S in the feed gas) for biogas combustion than the sample without V. This sample is promising for the anode of SOFCs using biogas fuel.  相似文献   

18.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. For its use with coal as fuel in power plants, a process integrated by coal gasification and CLC would have important advantages for CO2 capture. This paper presents the combustion results obtained with a Cu-based oxygen carrier in a continuous operation CLC plant (500 Wth) using syngas as fuel. For comparison purposes pure H2 and CO were also used. Tests were performed at two temperatures (1073 and 1153 K), different solid circulation rates and power inputs. Full syngas combustion was reached at 1073 K working at f higher than 1.5. The syngas composition had small effect on the combustion efficiency. This result seems to indicate that the water gas shift reaction acts as an intermediate step in the global combustion reaction of the syngas. The results obtained after 40 h of operation showed that the copper-based oxygen carrier prepared by impregnation could be used in a CLC plant for syngas combustion without operational problems such as carbon deposition, attrition, or agglomeration.  相似文献   

19.
《Ceramics International》2017,43(14):10927-10933
Ruddlesden-Popper La2NiO4+δ (LNO) oxygen electrodes were investigated under solid oxide electrolysis cell (SOEC) operation conditions. The electrochemical performance of LNO was measured in both solid oxide fuel cell (SOFC) and SOEC modes at 750 °C in air. The results suggest that LNO oxygen electrodes exhibit high electrochemical activity and the processes related to oxygen adsorption, dissociation and diffusion dominate the oxygen evolution reaction on the electrodes. Electrical conductivity relaxation (ECR) measurements imply that LNO shows better oxygen surface exchange performance than conventional LSM and LSCF electrodes, because of its special crystal structure with flexible non-stoichiometric oxygen. Significant performance degradation was observed during polarization at 500 mA cm−2 and 750 °C in the SOEC mode for 48 h. XRD and XPS results confirmed that high-order Ruddlesden-Popper La3Ni2O7 and La4Ni3O10 phases have great contributions to the performance degradation of LNO oxygen electrodes related to anodic current polarization at 500 mA cm−2 and 750 °C.  相似文献   

20.
In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed to consist of a fast gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The developed model is employed to predict the dynamic response of the bed combustion to fluctuations in sludge feeding-rate. Calculation results indicate that the bed combustion is sensitive to fluctuations with response times greater than 30 min, but severe delays exist for both outlet oxygen level and bed temperatures; from 6 to 13 min for O2 and 22–45 min for temperatures. Depending on the fluctuation frequency, the corresponding phase shifts are 39–96° for outlet O2, 138–336° for bed temperature and 80–336° for freeboard temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号