首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
(Mg1−xZnx)2SiO4 ceramics were prepared and characterized. The densification temperatures of the present ceramics are much lower than those for Mg2SiO4 and Zn2SiO4 end-members. Small solid solution limits of Zn in Mg2SiO4 and Mg in Zn2SiO4 are observed, and the bi-phase structure is confirmed in (Mg1−xZnx)2SiO4 ceramics with x = 0.1–0.9. Even though, it is clear that the Qf value of Zn2SiO4 ceramics can be significantly improved together with a suppressed temperature coefficient of resonant frequency τf by substituting Mg for Zn. (Mg0.4Zn0.6)2SiO4 ceramics indicate a good combination of microwave dielectric characteristics: r = 6.6 Qf = 95,650 GHz, and τf = −60 ppm/°C.  相似文献   

2.
Layered Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 materials with x = 0, 0.01, 0.02, 0.03, 0.05 are prepared by a solid-state pyrolysis method. The oxide compounds were calcined with various Cr-doped contents, which result in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry, and SEM. XRD experiment revealed that the Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 (x = 0, 0.01, 0.02, 0.03, 0.05) were crystallized to well layered -NaFeO2 structure. The first specific discharge capacity and coulombic efficiency of the electrode of Cr-doped materials were higher than that of pristine material. When x = 0.02, the sample showed the highest first discharge capacity of 241.9 mAh g−1 at a current density of 30 mA g−1 in the voltage range 2.3–4.6 V, and the Cr-doped samples exhibited higher discharge capacity and better cycleability under medium and high current densities at room temperature.  相似文献   

3.
To clarify the effect of substitutional electron doping on the thermoelectric figure of merit (ZT = S2σTκ−1) of Ruddlesden–Popper phase SrO(SrTiO3)n (or Srn+1TinO3n+1), measurements were conducted for several thermoelectric parameters, e.g. electrical conductivity (σ), Seebeck coefficient (S) and thermal conductivity (κ), of (Sr1−xREx)n+1TinO3n+1 (n = 1 or 2, RE (rare earth): La or Nd, x = 0.05 and 0.1) dense ceramics prepared by a conventional solid-state reaction and hot-pressing technique. Crystal structures of the resultant ceramics were represented as (Sr1−xREx)n+1 TinO3n+1 evaluated by powder X-ray diffraction followed by the Rietveld analysis. All the ceramics exhibited electrical conductivity and the σ values simply depended on the dopant concentration, indicating that both La3+ and Nd3+ ions act as electron donors. The |S| values increased with temperature due to decrease in the chemical potential. Significant reduction of the κ values was observed as compared to cubic-perovskite SrTiO3. The ZT value increased with temperature and reached 0.15 at 1000 K for (Sr0.95La0.05)3Ti2O7.  相似文献   

4.
Catalytic combustion of methane has been investigated over AMnO3 (A = La, Nd, Sm) and Sm1−xSrxMnO3 (x = 0.1, 0.3, 0.5) perovskites prepared by citrate method. The catalysts were characterized by chemical analysis, XRD and TPR techniques. Catalytic activity measurements were carried out with a fixed bed reactor at T = 623–1023 K, space velocity = 40 000 N cm3 g−1 h−1, CH4 concentration = 0.4% v/v, O2 concentration = 10% v/v.

Specific surface areas of perovskites were in the range 13–20 m2 g−1. XRD analysis showed that LaMnO3, NdMnO3, SmMnO3 and Sm1−xSrxMnO3 (x = 0.1) are single phase perovskite type oxides. Traces of Sm2O3 besides the perovskite phase were detected in the Sm1−xSrxMnO3 catalysts for x = 0.3, 0.5. Chemical analysis gave evidence of the presence of a significant fraction of Mn(IV) in AMnO3. The fraction of Mn(IV) in the Sm1−xSrxMnO3 samples increased with x. TPR measurements on AMnO3 showed that the perovskites were reduced in two steps at low and high temperature, related to Mn(IV) → Mn(III) and Mn(III) → Mn(II) reductions, respectively. The onset temperatures were in the order LaMnO3 > NdMnO3 > SmMnO3. In Sm1−xSrxMnO3 the Sr substitution for Sm caused the formation of Mn(IV) easily reducible to Mn(II) even at low temperature. Catalytic activity tests showed that all samples gave methane complete conversion with 100% selectivity to CO2 below 1023 K. The activation energies of the AMnO3 perovskites varied in the same order as the onset temperatures in TPR experiments suggesting that the catalytic activity is affected by the reducibility of manganese. Sr substitution for Sm in SmMnO3 perovskites resulted in a reduction of activity with respect to the unsubstituted perovskite. This behaviour was related to the reduction of Mn(IV) to Mn(II), occurring under reaction conditions, hindering the redox mechanism.  相似文献   


5.
Effect of substitution of CuO and WO3 on the microwave dielectric properties of BiNbO4 ceramics and the co-firing between ceramics and copper electrode were investigated. The (Bi1−xCux)(Nb1−xWx)O4 (x = 0.005, 0.01, 0.015, 0.02) composition can be densified between 900 and 990 °C. The microwave dielectric constants lie between 36 and 45 and the pores in ceramics were found to be the main influence. The Q values changes between 1400 and 2900 with different x values and sintering temperatures while Qf values lie between 6000 and 16,000 GHz. The microwave dielectric losses, mainly affected by the grain size, pores, and the secondary phase, are discussed. The (Bi1−xCux)(Nb1−xWx)O4 ceramics and copper electrode was co-fired under N2 atmosphere at 850 °C and the EDS analysis showed no reaction between the dielectrics and copper electrodes. This result presented the (Bi1−xCux)(Nb1−xWx)O4 dielectric materials to be good candidates for LTCC applications with copper electrode.  相似文献   

6.
R. Karita  H. Kusaba  K. Sasaki  Y. Teraoka   《Catalysis Today》2007,126(3-4):471-475
K2NiF4-type La0.2Sr1.8MnO4 was synthesized by nitrate (ND) and nitrate/acetate (NAD) decomposition methods as well as solid-state reaction. Single-phase oxide was obtained at 550 °C by the ND method just after the decomposition of Sr(NO3)2 and at 1000 °C by the NAD method after the decomposition of SrCO3. The K2NiF4-type oxide was hardly formed by the solid-state reaction. In the La–Sr–Mn system, an intermediate compound of SrCO3, if present or formed during the decomposition process, interfered with the low-temperature formation of the K2NiF4-type oxide because of its high decomposition temperature about 1000 °C. The ND method used only metal nitrates and no starting materials with carbon source, so that the low-temperature synthesis of the K2NiF4-type oxide was realized without forming obstinate intermediate compound of SrCO3. The low-temperature synthesis was possible for LaxSr2−xMnO4 with the substitution of La (0 < x < 0.5) and not for La0.2A1.8MnO4 (A = Ca and Ba). The effect of A-site cations on the K2NiF4-phase formation was discussed from the geometric aspect.  相似文献   

7.
The structure evolution, and microwave dielectric properties of Nd(2−x)/3LixTiO3 ceramics (0 ≤ x ≤ 0.5) were investigated in this paper. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that samples with x = 0.2–0.4 exhibit single phase. Multi-phases of Nd2Ti2O7, Nd2/3TiO3 and Nd2Ti4O11 were observed when x = 0 and 0.1. The concentration and ordering degree of A-site decrease with the increase of x value. The dielectric constant increases up to x = 0.2 and then decreases with the further increase of x value. The Qf value decreases with the increase of x value. The temperature coefficient of resonant frequency exhibits negative value and the absolute value decreases greatly with the decrease of x value.  相似文献   

8.
为开发出高能量密度镍氢电池负极材料,采用真空感应熔炼的方法制备了La0.79Mg0.21Ni3.95储氢合金,对比分析了铸态和退火态储氢合金的物相组成、显微形貌和电化学性能。结果表明,铸态和800 ℃/24 h退火态La0.79Mg0.21Ni3.95储氢合金中都只含有LaNi5和(La,Mg)2Ni7相;升高温度至900 ℃及以上时,储氢合金中形成了不同含量的(La,Mg)5Ni19和(La,Mg)6Ni24相。900 ℃/24 h退火态储氢合金的可逆吸放氢性能要高于950 ℃/48 h退火态储氢合金。铸态和退火态储氢合金都在前3周循环过程中到达了最大放电比容量,950 ℃/48 h退火态储氢合金中主要为(La,Mg)6Ni24相,其具有较高的循环稳定性。铸态和退火态La0.79Mg0.21Ni3.95储氢合金具有良好的电化学活化性能,高倍率放电性能(HRD1500)从高至低的顺序依次为950 ℃/48 h、950 ℃/24 h、900 ℃/24 h、 800 ℃/24 h、铸态;储氢合金的HRD1500与氢扩散速率(D)和交换电流密度(I0)的变化趋势相同,950 ℃/48 h退火态储氢合金具有最大的HRD1500,这主要与合金电极中含有61.8%(质量分数)的(La,Mg)6Ni24相、具有较高的DI0有关。  相似文献   

9.
The sintering behavior and dielectric properties of the monoclinic zirconolite-like structure compound Bi2(Zn1/3Nb2/3)2O7 (BZN) and Bi2(Zn1/3Nb2/3−xVx)2O7 (BZNV, x = 0.001) sintered under air and N2 atmosphere were investigated. The pure phase were obtained between 810 and 990 °C both for BZN and BZNV ceramics. The substitution of V2O5 and N2 atmosphere accelerated the densification of ceramics slightly. The influences on microwave dielectric properties from different atmosphere were discussed in this work. The best microwave properties of BZN ceramics were obtained at 900 °C under N2 atmosphere with r = 76.1, Q = 850 and Qf = 3260 GHz while the best properties of BZNV ceramics were got at 930 °C under air atmosphere with r = 76.7, Q = 890 and Qf = 3580 GHz. The temperature coefficient of resonant frequency τf was not obviously influenced by the different atmospheres. For BZN ceramics the τf was −79.8 ppm/°C while τf is −87.5 ppm/°C for BZNV ceramics.  相似文献   

10.
Ceramics with a composition close to BaZn2Ti4O11 were synthesized according to various substitutional mechanisms in order to verify an existence of a homogeneity range in the vicinity of this composition. Structural and microstructural investigations showed that the crystal structure of BaZn2Ti4O11 was formed in the homogeneity range corresponding to the formula BaZn2 − xTi4O11 − x (0 < x < 0.1). Densely sintered BaZn2 − xTi4O11 − x (0 < x < 0.1) ceramics exhibited a dielectric constant around 30, τf = −30 ppm/K and high Q × f values, which increased from 68,000 GHz at x = 0 to 83,000 GHz at x = 0.05. Structurally, the deficiency of Zn in BaZn2 − xTi4O11 − x (0 < x < 0.1) resulted in a slight decrease in the unit-cell volume. The influence of secondary phases in the BaZn2Ti4O11-based materials on the microwave dielectric properties was also investigated. A presence of small amounts of ZnO, BaTiO3, hollandite-type solid solutions (BaxZnxTi8 − xO16) and BaTi4O9 caused a decrease in Q × f values.  相似文献   

11.
The sintering properties of La1−xSrxFeO3−δ (x = 0.1, 0.25) mixed conductors have been investigated with particular emphasis on the effect of secondary phases due to cation non-stoichiometry (±5 mol% La excess and deficiency). Secondary phases, located at grain boundaries in cation non-stoichiometric materials, increased the sintering temperature compared to single-phase materials. Extensive swelling in final stage of sintering was observed in all materials, which resulted in micro-porous materials. The swelling was most pronounced in the phase pure and two-phase materials due to La-deficiency, while refractory secondary phases in La-excess materials inhibited both sintering, grain growth and swelling. In La-deficient materials, formation of molten secondary phases resulted in rapid swelling due to viscous flow. The present findings demonstrated the importance of controlling sintering temperature and time, as well as careful control of the cation stoichiometry of La1−xSrxFeO3−δ in order to achieve fully dense and homogenous La1−xSrxFeO3−δ ceramics.  相似文献   

12.
With an aim to improve the 5 V capacity and cyclability of the LiMn1.5Ni0.5O4 spinel oxide, three series of Cr substitutions have been pursued with y ≤ 0.2: LiMn1.5Ni0.5−yCryO4, LiMn1.5−0.5yNi0.5−0.5yCryO4, and LiMn1.5−0.33yLi0.33yNi0.5−yCryO4. While the first series involves an increase in the Mn3+ content, the second and third series are designed to maintain charge neutrality (Mn4+, Ni2+, Cr3+, and Li+) without introducing Mn3+ ions. The LiMn1.5Ni0.5−yCryO4 series experiences a widening of the 4 V plateau and a decrease in the 5 V capacity compared to LiMn1.5Ni0.5O4 due to an increase in the Mn3+ content. On the other hand, the LiMn1.5−0.5yNi0.5−0.5yCryO4 series shows a suppression of the 4 V plateau and an increase in the 5 V capacity due to the elimination of the Mn3+ions. The LiMn1.5−0.33yLi0.33yNi0.5−yCryO4 series shows a suppression of the 4 V plateau at low Cr contents, but an increase in the 4 V plateau as the Cr content increases above 0.1. Among the various compositions investigated, LiMn1.45Ni0.45Cr0.1O4 exhibits the best combination of high 5 V capacity (128 mAh/g at 5–4.2 V) and excellent capacity retention (98% in 50 cycles) compared to 118 mAh/g and 92% for LiMn1.5Ni0.5O4.  相似文献   

13.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

14.
Microwave dielectric properties of (Zn1/3Nb2/3)0.40(Ti1−xSnx)0.60O2 ceramics were investigated as a function of SnO2 content (0.15 ≤ x ≤ 0.30). A single phase with tetragonal rutile structure was obtained through the entire composition. The unit-cell volume of the specimens was increased with SnO2 content, due to the larger ionic radius of Sn4+ (0.69 Å) than that of Ti4+ (0.605 Å) for octahedral site. Dielectric constant (K) of the sintered specimens was affected by the dielectric polarizability. Quality factor (Qf) was dependent on the degree of reduction of Ti4+ ion. With an increase of SnO2 content, the temperature coefficient of resonant frequency (TCF) of the specimens decreased due to the decrease of the octahedral distortion of rutile structure.  相似文献   

15.
Supported Au catalysts Au-Au+-Clx/Fe(OH)y (x < 4, y ≤ 3) and Au-Clx/Fe2O3 prepared with co-precipitation without any washing to remove Cl and without calcining or calcined at 400 °C were studied. It was found that the presence of Cl had little impact on the activity over the unwashed and uncalcined catalysts; however, the activity for CO oxidation would be greatly reduced only after Au-Au+-Clx/Fe(OH)y was further calcined at elevated temperatures, such as 400 °C. XPS investigation showed that Au in catalyst without calcining was composed of Au and Au+, while after calcined at 400 °C it reduced to Au0 completely. It also showed that catalysts precipitated at 70 °C could form more Au+ species than that precipitated at room temperatures. Results of XRD and TEM characterizations indicated that without calcining not only the Au nano-particles but also the supports were highly dispersed, while calcined at 400 °C, the Au nano-particles aggregated and the supports changed to lump sinter. Results of UV–vis observation showed that the Fe(NO3)3 and HAuCl4 hydrolyzed partially to form Fe(OH)3 and [AuClx(OH)4−x] (x = 1–3), respectively, at 70 °C, and such pre-partially hydrolyzed iron and gold species and the possible interaction between them during the hydrolysis may be favorable for the formation of more active precursor and to avoid the formation of Au–Cl bonds. Results of computer simulation showed that the reaction molecular of CO or O2 were more easily adsorbed on Au+ and Au0, but was very difficultly absorbed on Au. It also indicated that when Cl was adsorbed on Au0, the Au atom would mostly take a negative electric charge, which would restrain the adsorption of the reaction molecular severely and restrain the subsequent reactions while when Cl was adsorbed on Au+ there only a little of the Au atom take negative electric charge, which resulting a little impact on the activity.  相似文献   

16.
Catalytic methane combustion and CO oxidation were investigated over AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) perovskites prepared by citrate method and calcined at 1073 K. The catalysts were characterized by X-ray diffraction (XRD). Redox properties and the content of Fe4+ were derived from temperature programmed reduction (TPR). Specific surface areas (SA) of perovskites were in 2.3–9.7 m2 g−1 range. XRD analysis showed that LaFeO3, NdFeO3, SmFeO3 and LaFe1−xMgxO3 (x·0.3) are single phase perovskite-type oxides. Traces of La2O3, in addition to the perovskite phase, were detected in the LaFe1−xMgxO3 catalysts with x=0.4 and 0.5. TPR gave evidence of the presence in AFeO3 of a very small fraction of Fe4+ which reduces to Fe3+. The fraction of Fe4+ in the LaFe1−xMgxO3 samples increased with increasing magnesium content up to x=0.2, then it remained nearly constant. Catalytic activity tests showed that all samples gave methane and CO complete conversion with 100% selectivity to CO2 below 973 and 773 K, respectively. For the AFeO3 materials the order of activity towards methane combustion is La>Nd>Sm, whereas the activity, per unit SA, of the LaFe1−xMgxO3 catalysts decreases with the amount of Mg at least for the catalysts showing a single perovskite phase (x=0.3). Concerning the CO oxidation, the order of activity for the AFeO3 materials is Nd>La>Sm, while the activity (per unit SA) of the LaFe1−xMgxO3 catalysts decreases at high magnesium content.  相似文献   

17.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

18.
Structural (XRD) and spectroscopic (EPR, IR and Raman) investigations were performed to elucidate the influence of CeO2 content on the phase composition and surface chemistry of CexZr1−xO2 solid solutions (x = 0.10–0.85), interacting with NO and NO2 in the absence and presence of oxygen. Strong influence of ceria loading on the adsorption modes of both nitrogen oxides and the nature of the resultant surface species was revealed. Adsorption of NO led to formation of mononitrosyl complexes, dimers and N2O, whereas interaction of NO2 with the ceria–zirconia catalyst resulted in the adsorbate disproportionation or coupling, depending on the sample composition.  相似文献   

19.
Bi0.5(Na1−xyKxAgy)0.5TiO3 piezoelectric ceramics were prepared by conventional ceramic processes. X-ray diffraction patterns show a pure perovskite structure, indicating that the K+ and Ag+ ions substitute for the Na+ ions in Bi0.5Na0.5TiO3. The temperature dependence of the dielectric constant and dissipation factor shows all ceramics to experience two phase transitions: from ferroelectric to anti-ferroelectric and from anti-ferroelectric to paraelectric. The transition temperature from ferroelectric to anti-ferroelectric and the temperature at which the dielectric constant reaches its maximum value decrease with the increase of K+ amount. At room temperature, the ceramics containing 17.5–20 mol% K+ and 2 mol% Ag+ exhibit high piezoelectric constant (d33 = 180 pC/N) and high electromechanical coupling factor (kp = 35%).  相似文献   

20.
We have used a complex sol–gel process to synthesize a family of compounds LiNixCo1−xO2 (x = 0, 0.25, 0.5, 0.75, 1). These compounds are candidates for electrode materials in high-energy-density batteries. Starting sols were prepared from xNi2+ + (1 − x) Co2+ acetates/ascorbic acid aqueous solutions by alkalizing with LiOH and NH3. With thermal treatment in air, nickel carbonates formed in quantities roughly proportional to Ni concentration. The carbonate impurities could not be fully removed by heating in air to high temperatures. Because formation of pure layered oxides was inhibited by the presence of the carbonates, we developed a new way to remove them from just-formed precursors by treating the intermediate phases (those formed after calcination at 750 °C) with concentrated HNO3 and H2O2. All resulting powders were phase pure by X-ray diffraction and were easily friable. Various electrochemical properties of compacts prepared from these powders were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号