首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aryl hydrocarbon receptor (AhR) is targeted by ubiquitination for degradation by the proteasome shortly after its activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In silico screening identified p-anilinoaniline (pAA) as a putative inhibitor of an E2 ligase that partners with an E3 ligase implicated in AhR ubiquitination. We investigated whether pAA could modify AhR-dependent activation of its target gene CYP1A1. pAA (1-200 μM) alone did not affect AhR content, or stimulate CYP1A1 mRNA accumulation in human mammary epithelial MCF10A cultures. However, pretreatment with ≥100 μM pAA suppressed TCDD-induced CYP1A1 activation and AhR degradation via its functioning as an AhR antagonist. At a lower concentration (25 μM), pAA cotreatment increased TCDD-induced CYP1A1 mRNA accumulation, without inhibiting AhR turnover or altering CYP1A1 mRNA half-life. Whereas TCDD alone did not affect MCF10A proliferation, 25 μM pAA was cytostatic and induced a G(1) arrest that lasted ~7 h and induced an S phase arrest that peaked 5 to 8 h later. TCDD neither affected MCF10A cell cycle progression nor did it alter pAA effects on the cell cycle. The magnitude of CYP1A1 activation depended upon the time elapsed between pAA pretreatment and TCDD addition. Maximal AhR occupancy of the CYP1A1 promoter and accumulation of CYP1A1 heterogeneous nuclear RNA and mRNA occurred when pAA-pretreated cultures were exposed to TCDD in late G(1) and early/mid S phase. TCDD-mediated induction of CYP2S1 was also cell cycle-dependent in MCF10A cultures. Similar studies with HepG2 cultures indicated that the cell cycle dependence of CYP1A1 induction is cell context-dependent.  相似文献   

2.
3.
5Alpha-dihydrotestosterone significantly increased cell growth of lung adenocarcinoma cell line H1355. Benzo[alpha]pyrene (BaP) was a pulmonary carcinogen found in cigarette smoke. Treatment with 1microM BaP tremendously reduced constitutive androgen receptor (AR) expression, as determined with Western immunoblotting and the real-time RT-PCR assay, as well as testosterone-induced AR protein levels in H1355 cells. Similarly, 1microM BaP significantly reduced AR mRNA levels in human bronchial epithelial cells BEAS-2B. Although BaP, 2,3,7,8-tetrachlorodibenzo-p-dixin and polychlorinated biphenyl 126 activated aryl hydrocarbon receptor (AhR), which subsequently induced cytochrome P4501A1 (CYP1A1) and P4501B1 (CYP1B1) expression in H1355 cells, unexpectedly, neither TCDD nor PCB126 reduced AR expression. Antagonizing AhR activation and cytochrome P4501 activity with alpha-naphthoflavone, or inhibiting CYP1B1 activity with 2,4,3',5'-tetramethoxystilbene, however, prevented BaP-induced AR reduction. Furthermore, 7,8-dihydro-9,10-epoxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene, a BaP carcinogenic metabolite catalyzed by CYP1A1 and CYP1B1, significantly reduced AR expression in H1355 cells and human lung fibroblasts WI-38. This was the first study that reports that BaP and BPDE reduced endogenous AR expression. These data suggest that metabolically activated BaP may disrupt androgen function by reducing AR levels in androgen-responsive organs.  相似文献   

4.
The aryl hydrocarbon receptor (AhR), when activated by exogenous ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), regulates expression of several phase I and phase II enzymes and is also involved in the regulation of cell proliferation. Several studies suggest that endogenous AhR ligand(s) may exist. One putative endogenous ligand is indirubin, which was recently identified in human urine and bovine serum. We determined the effect of indirubin in MCF-7 breast cancer cells on induction of the activities of cytochromes P450 (CYP) 1A1 and 1B1, as measured by estradiol and ethoxyresorufin metabolism, and on induction of the CYP1A1 and CYP1B1 mRNAs. With 4-hr exposure, the effects of indirubin and TCDD at 10nM on CYP activity were comparable, but the effects of indirubin, unlike those of TCDD, were transitory. Indirubin-induced ethoxyresorufin-O-deethylase activity was maximal by 6-9 hr post-exposure and had disappeared by 24 hr, whereas TCDD-induced activities remained elevated for at least 72 hr. The effects of indirubin on CYP mRNA induction were maximal at 3 hr. Indirubin was metabolized by microsomes containing cDNA-expressed human CYP1A1 or CYP1B1. The potency of indirubin was comparable to that of TCDD in a CYP1B1-promoter-driven luciferase assay, when MCF-7 cells were co-exposed to the AhR ligands together with the CYP inhibitor, ellipticine. Thus, if indirubin is an endogenous AhR ligand, then AhR-mediated signaling by indirubin is likely to be transient and tightly controlled by the ability of indirubin to induce CYP1A1 and CYP1B1, and hence its own metabolism.  相似文献   

5.
Cytochrome P450 1A1 (CYP1A1) is induced by halogenated and polycyclic aromatic hydrocarbons following activation of the aryl hydrocarbon receptor (AhR). Protein kinase C (PKC) has been implicated in the regulation of this response. In tissue culture, induction of PKC activity with phorbol esters synergizes the actions of TCDD-induced CYP1A1, while PKC inhibitors block induction of CYP1A1 by TCDD. Here, the actions of specific PKC inhibitors on CYP1A1 induction were examined using a HepG2 human cell line (TV101L) that carries a stably integrated firefly luciferase gene under control of the human CYP1A1 promoter (-1612/+293). TV101 cells were treated with TCDD and either the kinase inhibitor staurosporine or one of the PKC inhibitors GF109203X, G?6983, or G?6976. Aryl hydrocarbon receptor-dependent activation of CYP1A1-luciferase and cellular PKC activity were measured. TCDD treatment induced CYP1A1-luciferase activity in an AhR-dependent manner, as determined by binding of nuclear AhR to xenobiotic response elements (XREs). Dose-dependent inhibition of PKC activity by staurosporine was concordant with inhibition of TCDD-induced CYP1A1-luciferase activity. However, the PKC inhibitors GF109203X, G?6983, and G?6976 blocked PKC activity at concentrations independent of those necessary to block TCDD induction of CYP1A1-luciferase activity. For all inhibitors, reduction in CYP1A1-luciferase activity was independent of AhR activation, as determined by electrophoretic mobility shift analysis of TCDD-activated nuclear AhR. The specific PKC inhibitors did not significantly alter cytosolic or nuclear levels of AhR protein, whether alone or in combination with TCDD. These results suggested that PKC was not the sole factor responsible for regulation of CYP1A1.  相似文献   

6.
7.
Endometriosis is a debilitating disease estimated to affect 10% of reproductive-age women and characterized by the growth of endometrial tissue outside of the uterus. The present study characterizes a human endometrial explant culture model for studying the direct effects of TCDD exposure by assessing the expression of CYP1A1 and CYP1B1 mRNA (Northern blotting), protein (Western blotting), and activity (7-ethoxyresorufin-O-deethylase; EROD) in explants cultured with and without TCDD. Explants were obtained at laparoscopy or laparotomy from women undergoing surgery for tubal ligation, endometriosis, or pelvic pain unrelated to endometriosis. The explants were cultured with 10 nM estradiol (E(2)) or 1 nM E(2) plus 500 nM progesterone (P(4)) with or without TCDD (first 24 h). The expression of CYP1A1 and CYP1B1 mRNA was greatest with 10 nM TCDD and increased up to 72 h after initial exposure. EROD activity increased up to 120 h. Explants from a secretory phase biopsy became reorganized in culture and formed a new epithelial membrane, while maintaining basic endometrial morphology and viability for up to 120 h. At 24 h, TCDD significantly increased CYP1A1 and CYP1B1 mRNA, and at 72 h, TCDD significantly increased EROD activity and CYP1B1 protein compared to explants cultured without TCDD for similar times. CYP1B1 protein also exhibited substantial constitutive expression that was similar in uncultured biopsies, where CYP1B1 protein was immunolocalized in the cytoplasm of epithelial glands, with only occasional patches of protein in the surface epithelial membrane. In explants cultured with and without TCDD exposure, CYP1B1 protein was localized in the cytoplasm of the new surface epithelial membrane and glands closest to the surface. CYP1A1 protein was not detected in uncultured biopsies or explants. Both younger age (age 30 and under) and proliferative phase were associated with higher TCDD-induced EROD activity in specimens treated with E(2):P(4). No significant endometriosis-related differences were observed for any of the biomarkers, but the detection of disease-specific change was limited by small sample size and variability in tissue-cycle phase. The human endometrial explant culture model will be useful for future studies of the effects of dioxin-like compounds on human endometrium in relationship to cycle phase and hormonal exposure.  相似文献   

8.
The aryl hydrocarbon receptor (AhR) mediates a wide variety of toxic effects due to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The human hepatoma cell line SK-HEP-1 expresses AhR and ARNT. However, TCDD failed to induce CYP1A1 and XRE-dependent reporter genes in these cells. Although CYP1A1 was not induced by TCDD exposure, both CYP1B1 and AhR repressor (AhRR) were constitutively expressed. The AhR antagonist alpha-naphthoflavone altered the basal level of XRE-dependent reporter gene expression dose-dependently. As our results suggested the activation of AhR signals by putative endogenous ligands, we established SK-HEP-1-derived cell lines that stably expressed CYP1A1. The inducibility of XRE-dependent reporter genes and CYP1B1 by TCDD was restored in these cells. Our findings demonstrated the presence of endogenous ligands in SK-HEP-1 cells due to the absence of the metabolizing enzyme CYP1A1, but not CYP1B1, which allowed the constitutive expression of AhR target genes.  相似文献   

9.
10.
Cytochrome P-450 (CYP) 1B1 expression in mouse hepatoma (Hepa-1) wild-type (WT) cells was compared with responses in Hepa-1 variants LA1 and LA2, which, respectively, exhibit low aryl hydrocarbon receptor (AhR) level and defective AhR nuclear translocator (ARNT) protein. 10T1/2 mouse embryo fibroblasts express predominantly CYP1B1 and at a 100 times higher level than in Hepa-1 cells, whereas they express about 300-fold lower CYP1A1 than Hepa-1 cells. The expression of CYP1B1 in WT and LA1 variant, although at a much lower level, follows that of CYP1A1, reflecting their common regulation through the AhR. The LA2 (ARNT-defective) cells showed a major difference between CYP1B1 and CYP1A1 expression. Although CYP1A1 mRNA levels in LA2 were extremely low and unresponsive to 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), basal CYP1B1 mRNA and protein were expressed at levels similar to those seen in TCDD-induced WT. The elevated basal CYP1B1 mRNA in LA2 cells decreased by 50% after transient transfection of ARNT cDNA, in parallel with substantial restoration of CYP1A1 induction. This implicates ARNT as a suppressor of CYP1B1 basal expression in Hepa cells. In transient CYP1B1-luciferase constructs in LA2 cells, ARNT shows stimulatory effects in the enhancer region but an inhibitory effect on the proximal promoter. Two CYP1B1 enhancer elements [xenobiotic-responsive element (XRE) 1/2 and XRE4] formed TCDD-unresponsive complexes of similar mobility to TCDD-stimulated AhR-ARNT complex with XRE5. However, because these two complexes were formed to the same extent in LA2 as in WT cells, they cannot be due to ARNT or contribute to ARNT-regulated suppression.  相似文献   

11.
12.
Exposure of the human breast epithelial cell line MCF10A to > or = 1 microg/ml cycloheximide (CHX)-induced accumulations of CYP1A1 mRNA 6-fold greater than that achieved with only 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Cotreatment with CHX and TCDD caused superinduction of CYP1A1 with accumulations of CYP1A1 mRNA 30-fold greater than that achieved with only TCDD. Similar results were obtained with the protein translation inhibitors anisomycin (ANS) and puromycin (PUR). Intra- and interinhibitor comparisons of dose/concentration response curves demonstrated the absence of a quantitative relationship between [3H]leucine incorporation and CYP1A1 induction/superinduction. The inducing/superinducing activities of CHX were suppressed by coincubation with the aryl hydrocarbon receptor (AhR) antagonists alpha-naphthoflavone and 3'-methoxy-4'-nitroflavone (PD168641). Electrophoretic mobility shift assays demonstrated that nuclear extracts from CHX-treated and CHX + TCDD cotreated cultures formed approximately 58 and approximately 340% of the AhR/DNA complexes obtained with TCDD-treated cultures, respectively. In contrast, rat liver extracts did not form AhR/DNA complexes after in vitro transformation with CHX. AhR turnover in TCDD-treated hepatoma 1c1c7 cultures was suppressed by cotreatment with CHX. In contrast, CHX or ANS treatment of MCF10A cultures induced AhR loss and enhanced AhR loss in cultures cotreated with TCDD. Cotreatment with N-benzoyloxycarbonyl-(Z)-Leu-Leu-leucinal (MG132) but not leptomycin B suppressed AhR loss. Hence, in MCF10A cells, CHX is not an AhR agonist but can superinduce CYP1A1 via an AhR-dependent mechanism; CYP1A1 superinduction by translation inhibitors is neither quantitatively related to effects on protein synthesis nor due to a generalized prevention of AhR proteolysis, and proteasome-mediated degradation of the activated AhR can occur in the nucleus.  相似文献   

13.
14.
We have used polycyclic aromatic hydrocarbon (PAH) alkyne metabolism-based inhibitors to test whether CYP1B1 metabolism is linked to aryl hydrocarbon receptor (AhR) activation in mouse embryo fibroblasts (MEF). 1-ethynylpyrene (1EP) selectively inactivated CYP1B1 dimethylbenzanthracene (DMBA) metabolism in C3H10T1/2 MEFs; whereas 1-(1-propynyl)pyrene (1PP) preferentially inhibited CYP1A1 activity in Hepa-1c1c7 mouse hepatoma cells (Hepa). In each cell type >90% inhibition of DMBA metabolism after 1 h treatment with each inhibitor (0.1 microM) was progressively reversed and then increased to levels seen with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induction (fourfold stimulation). It was found that 0.1 microM 1EP and 1PP maximally induce CYP1B1 and CYP1A1 mRNA levels in10T1/2 and Hepa cells, respectively, after 6 h. 1-Ethylpyrene (EtP), which lacks the activatable acetylene moiety, was far less effective as an inhibitor and as an inducer. AhR activation is essential for 1EP induction as evidenced by the use of AhR antagonists and AhR-deficient MEFs and absence of induction following inhibition of DMBA metabolism with carbon monoxide (CO). Inhibition of CYP1B1 was linked to enhanced AhR activation even at early stages prior to significant ligand depletion. 1EP and EtP were similarly effective in stimulating AhR nuclear translocation, though 5-10 times slower compared with TCDD, and produced no significant down-regulation of the AhR. TCDD activated AhR/Arnt complex formation with an oligonucleotide xenobiotic response element far more extensively than 1EP or EtP, even at concentrations of 1EP that increased CYP1B1 mRNA to similar levels. CO did not influence these responses to EtP, event hough CO treatment potentiated EtP induction of CYP1B1 mRNA. These differences suggest a fundamental difference between PAH/AhR and TCDD/AhR complexes where CYP1B1 metabolic activity regulates the potency, rather than the formation of the AhR/Arnt complex.  相似文献   

15.
16.
Cytochrome P-450s (CYPs) detoxify a wide variety of xenobiotics and environmental contaminants, but can also bioactivate carcinogenic polycyclic aromatic hydrocarbons, such as benzo(a)pyrene (BaP), to DNA-reactive species. The primary CYPs involved in the metabolism and bioactivation of BaP are CYP1A1 and CYP1B1. Furthermore, BaP can induce expression of CYP1A1 and CYP1B1 via the aryl hydrocarbon receptor. Induction of CYP1A1 and CYP1B1 by BaP in target (lung) and non-target (liver) tissues was investigated utilizing precision-cut rat liver and lung slices exposed to BaP in vitro. Tissue slices were also prepared from rats pretreated in vivo with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to induce expression of CYP1A1 and CYP1B1. In addition, in vivo exposure studies were performed with BaP to characterize and validate the use of the in vitro tissue slice model. In vitro exposure of liver and lung slices to BaP resulted in a concentration-dependent increase in CYP1A1 and CYP1B1 mRNA and protein levels, which correlated directly with the exposure-related increase in BaP-DNA adduct levels observed previously in the tissue slices [Harrigan, J.A., Vezina, C.M., McGarrigle, B.P., Ersing, N., Box, H.C., Maccubbin, A.E., Olson, J.R., 2004. DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo(a)pyrene. Toxicological Sciences 77, 307-314]. Pretreatment of animals in vivo with TCDD produced a marked induction of CYP1A1 and CYP1B1 expression in the tissue slices, which was similar to the levels of CYP1A1 and CYP1B1 mRNA achieved in liver and lung following in vivo treatment with BaP. Following in vitro exposure to BaP, the levels of CYP1A1 were greater in the lung than the liver, while following all exposures (in vitro and in vivo), the levels of CYP1B1 mRNA were greater in lung tissue compared to liver. The higher expression of CYP1A1 and CYP1B1 in the lung was associated with higher levels of BaP-DNA adducts in the lung slices (Harrigan et al.'s work) and together, these results may contribute to the tissue specificity of BaP-mediated carcinogenesis.  相似文献   

17.
Cytochrome P4501B1 (CYP1B1), the major constitutively expressed CYP in the rat mammary gland, is induced by Ah-receptor (AhR) ligands, while CYP1A1 is predominantly expressed only after induction. These CYPs contribute to carcinogenic activation of polycyclic aromatic hydrocarbons (PAHs). AhR, ARNT, and CYP1B1 were only weakly expressed, even after 2,3,7,8-tetrachlorodibenzo-p-dioxin induction, when rat mammary epithelial cells (RMEC) were cultured on plastic. RMEC cultured on the extracellular matrix (ECM), Matrigel, or on a floating gel of collagen I demonstrated branching morphogenesis and substantially increased basal CYP1B1 and induced CYP1A1 expression, in parallel with large increases in AhR and ARNT expression. Branching was more pronounced in the Wistar Kyoto than in the Wistar Furth rat strain. Although EGF enhanced branching, neither strain nor growth factor treatment substantially impacted CYP expression. Increased AhR and ARNT expression is observed within 24 h of dispersal on Matrigel, substantially prior to branch formation. Culture on thin layers of collagen I, collagen IV, and laminin, respectively, failed to reproduce the branching morphogenesis or increases in AhR, ARNT, or CYP expression. However, adherent, gelled collagen I recapitulated the increased protein expression, without supporting branching. This increased protein expression was closely paralleled by enhanced expression of beta-catenin and E-cadherin, components of cell-cell adhesion complexes. A synthetic peptide that selectively antagonizes integrin-ECM interactions reduced branch formation, without diminishing AhR, ARNT, and CYP expression. These data demonstrate that early ECM surface adhesion interactions mediate AhR and ARNT expression, which enhances CYP expression, independent of branching morphogenesis.  相似文献   

18.
Naringenin, dietary flavonoid, is antioxidant constituents of many citrus fruits. In the present study, we investigated the effect of naringenin on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible CYP1A1 gene expression in mouse hepatoma Hepa-1c1c7 cells. Naringenin alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, the TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and naringenin in a dose dependent manner. TCDD-induced CYP1A1 mRNA level was also markedly suppressed by naringenin. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and electrophoretic mobility shift assay revealed that naringenin reduced transformation of the aryl hydrocarbons receptor(AhR) to a form capable of specifically binding to the DRE sequence in the promoter of the CYP1A1 gene. These results suggest the down regulation of the CYP1A1 gene expression by either naringenin in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear AhR.  相似文献   

19.
20.
Son DS  Roby KF  Rozman KK  Terranova PF 《Toxicology》2002,176(3):229-243
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous pollutant and promoter of carcinogenesis. This study investigated the interaction between TCDD and different estrogens in a cancer cell line (ID8) derived from mouse ovarian epithelium. TCDD-induced ethoxyresorufin-O-deethylase (EROD) activity and cytochrome P4501A1 (CYP1A1) expression in a dose- and time-dependent manner. Estrogen receptor (ER) alpha mRNAs were constitutively expressed, but ER beta and progesterone receptor (PR) mRNAs were not expressed. Induction of EROD by TCDD was completely inhibited by a alpha-naphthoflavone and phenanthroline, two aryl hydrocarbon receptor (AhR) antagonists. Progesterone and gonadotropins (FSH and LH) had no effect on the induction of EROD by TCDD. Congeners of 17beta-estradiol (E2) increased the induction of EROD activity by TCDD dose-dependently in the relative potency order: estrone (El)>E2> or = 4-hydroxyestradiol (4OHE2)> or = 2-hydroxyestradiol (2OHE2). In contrast, estriol (E3) decreased EROD activity induced by TCDD. E2 increased TCDD-induced CYP1A1 protein and mRNA whereas E3 decreased both the protein and mRNA. E2 did not alter luciferase activity induced by TCDD in cells transfected with a luciferase reporter containing dioxin response elements (DRE) or a CYP1A1 promoter. In contrast, E3 dose-dependently decreased the luciferase activity. A pure anti-estrogen (ICI 182780) inhibited the interaction between E2 and TCDD but did not block E3's effect on EROD activity. These results indicate that E2 may affect TCDD-induced CYP1A1 expression by a mechanism different from E3 in ID8 cells. It appears that the potentiation of E2 in the induction of CYP1A1 by TCDD occurs by a mechanism involving ER alpha since a specific ER antagonist blocked the potentiation. The inhibitory effect of E3 may be due to a rapid direct effect on EROD and a later suppression of CYP1A1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号