首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Salmonella enterica subsp. enterica is the leading cause of bacterial food-borne disease in the United States. Molecular subtyping methods are powerful tools for tracking the farm-to-fork spread of food-borne pathogens during outbreaks. In order to develop a novel multilocus sequence typing (MLST) scheme for subtyping the major serovars of S. enterica subsp. enterica, the virulence genes sseL and fimH and clustered regularly interspaced short palindromic repeat (CRISPR) loci were sequenced from 171 clinical isolates from nine Salmonella serovars, Salmonella serovars Typhimurium, Enteritidis, Newport, Heidelberg, Javiana, I 4,[5],12:i:-, Montevideo, Muenchen, and Saintpaul. The MLST scheme using only virulence genes was congruent with serotyping and identified epidemic clones but could not differentiate outbreaks. The addition of CRISPR sequences dramatically improved discriminatory power by differentiating individual outbreak strains/clones. Of particular note, the present MLST scheme provided better discrimination of Salmonella serovar Enteritidis strains than pulsed-field gel electrophoresis (PFGE). This method showed high epidemiologic concordance for all serovars screened except for Salmonella serovar Muenchen. In conclusion, the novel MLST scheme described in the present study accurately differentiated outbreak strains/clones of the major serovars of Salmonella, and therefore, it shows promise for subtyping this important food-borne pathogen during investigations of outbreaks.  相似文献   

2.
Infectious diarrhea syndrome is an important cause of human morbidity around the world, and Salmonella genus remains one of the most prevalent etiology. Salmonella enterica serovar Typhimurium outbreak-associated isolates received by the Laboratory for Enteric Pathogens from N.I.R.D.M.I. "Cantacuzino" for confirmation and typing were analyzed by genomic pulsed-field gel electrophoresis (PFGE) and phage susceptibility testing to establish their relatedness. Both typing methods proved to have similar discriminatory power. The isolates originating from the same outbreak belonged to the same phage type and showed indistinguishable PFGE profiles. The molecular characterization of autochthonal Salmonella enterica Typhimurium outbreak human isolates provided laboratory evidence that epidemiologically related isolates collected from community outbreaks of disease were also genetically related. In order to improve the national and international surveillance of major foodborne pathogens the reference laboratory centers are required to establish and maintain the capacity to perform a wide range of both phenotypic and genotypic methods to support outbreak investigations.  相似文献   

3.
The aims of this study were to determine the ability of amplified fragment length polymorphism (AFLP) to differentiate Salmonella isolates from different units of swine production and to demonstrate the relatedness of Salmonella between farms and abattoirs by AFLP. Twenty-four farms in the midwestern United States were visited four times from 2006 to 2009. At each farm or abattoir visit, 30 fecal samples or 30 mesenteric lymph nodes were collected, respectively. A total of 220 Salmonella isolates were obtained, serotyped, and genotyped by multilocus sequence typing (MLST) and AFLP. These 220 isolates clustered into 21 serotypes, 18 MLST types, and 14 predominant AFLP clusters based on a genetic similarity threshold level of 60%. To assess genetic differentiation between farms, harvest cohorts, and pigs, analysis of molecular variance was conducted using AFLP data. The results showed 65.62% of overall genetic variation was attributed to variance among pigs, 27.21% to farms, and 7.17% to harvest cohorts. Variance components at the farm (P = 0.003) and pig (P = 0.001) levels were significant, but not at the harvest cohort level (P = 0.079). A second analysis, a permutation test using AFLP data, indicated that on-farm and at-abattoir Salmonella from pigs of the same farms were more related than from different farms. Therefore, among the three subtyping methods, serotyping, MLST, and AFLP, AFLP was the method that was able to differentiate among Salmonella isolates from different farms and link contamination at the abattoir to the farm of origin.  相似文献   

4.
In Romania, Salmonella enterica serovar Typhimurium isolates are currently typed by antimicrobial resistance profiles and phage typing, as part of the national laboratory-based surveillance system of human enteric infections. The aim of the present study was to assess the added value of complementing this approach with molecular fingerprinting, namely pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem-repeats analysis (MLVA). Thirty-six S. Typhimurium isolates received by the Reference Center for Human Salmonella Infections for confirmation and typing from the Microbiology Departments of three Public Health Authorities, were selected for this study. Phage typing revealed that 14 isolates (39%) were nontypeable (NT). Twenty-two isolates were assigned to 5 phage types: DT193 (11 isolates), U302 (7 isolates), DT116 (2 isolates), DT41 (1 isolate) and DT86 (1 isolate). Antimicrobial susceptibility testing showed that all the NT and DT116 isolates were multidrug resistant and extended-spectrum betalactamase producers. All the examined isolates were typeable when using the molecular approach. Both methods gave conclusive and comparable results, documenting the genetic relatedness and discriminating the outbreak isolates from sporadic cases. We conclude that in order to improve outbreak investigation and surveillance of salmonellosis in Romania, the current routine typing of Salmonella isolates should be complemented with at least one of these DNA fingerprinting methods.  相似文献   

5.
Amplified fragment length polymorphism (AFLP) is a recently developed, PCR-based high resolution fingerprinting method that is able to generate complex banding patterns which can be used to delineate intraspecific genetic relationships among bacteria. In the present study, AFLP was evaluated for its usefulness in the molecular typing of Salmonella typhi in comparison to ribotyping and pulsed-field gel electrophoresis (PFGE). Six S. typhi isolates from diverse geographic areas (Malaysia, Indonesia, India, Chile, Papua New Guinea and Switzerland) gave unique, heterogeneous profiles when typed by AFLP, a result which was consistent with ribotyping and PFGE analysis. In a further study of selected S. typhi isolates from Papua New Guinea which caused fatal and non-fatal disease previously shown to be clonally related by PFGE, AFLP discriminated between these isolates but did not indicate a linkage between genotype with virulence. We conclude that AFLP (discriminatory index=0.88) has a higher discriminatory power for strain differentiation among S. typhi than ribotyping (DI=0.63) and PFGE (DI=0.74).  相似文献   

6.
In this study, we report a whole-genome single nucleotide polymorphism (SNP)-based evolutionary approach to study the epidemiology of a multistate outbreak of Salmonella enterica subsp. enterica serovar Montevideo. This outbreak included 272 cases that occurred in 44 states between July 2009 and April 2010. A case-control study linked the consumption of salami made with contaminated black and red pepper to the outbreak. We sequenced, on the SOLiD System, 47 isolates with XbaI PFGE pattern JIXX01.0011, a common pulsed-field gel electrophoresis (PFGE) pattern associated with isolates from the outbreak. These isolates represented 20 isolates collected from human sources during the period of the outbreak and 27 control isolates collected from human, food, animal, and environmental sources before the outbreak. Based on 253 high-confidence SNPs, we were able to reconstruct a tip-dated molecular clock phylogeny of the isolates and to assign four human isolates to the actual outbreak. We developed an SNP typing assay to rapidly discriminate between outbreak-related cases and non-outbreak-related cases and tested this assay on an extended panel of 112 isolates. These results suggest that only a very small percentage of the human isolates with the outbreak PFGE pattern and obtained during the outbreak period could be attributed to the actual pepper-related outbreak (20%), while the majority (80%) of the putative cases represented background cases. This study demonstrates that next-generation-based SNP typing provides the resolution and accuracy needed for outbreak investigations of food-borne pathogens that cannot be distinguished by currently used subtyping methods.  相似文献   

7.
A multi-virulence-locus sequence typing (MVLST) scheme was developed for subtyping Listeria monocytogenes, and the results obtained using this scheme were compared to those of pulsed-field gel electrophoresis (PFGE) and the published results of other typing methods, including ribotyping (RT) and multilocus sequence typing (MLST). A set of 28 strains (eight different serotypes and three known genetic lineages) of L. monocytogenes was selected from a strain collection (n > 1,000 strains) to represent the genetic diversity of this species. Internal fragments (ca. 418 to 469 bp) of three virulence genes (prfA, inlB, and inlC) and three virulence-associated genes (dal, lisR, and clpP) were sequenced and analyzed. Multiple DNA sequence alignment identified 10 (prfA), 19 (inlB), 13 (dal), 10 (lisR), 17 (inlC), and 16 (clpP) allelic types and a total of 28 unique sequence types. Comparison of MVLST with automated EcoRI-RT and PFGE with ApaI enzymatic digestion showed that MVLST was able to differentiate strains that were indistinguishable by RT (13 ribotypes; discrimination index = 0.921) or PFGE (22 profiles; discrimination index = 0.970). Comparison of MVLST with housekeeping-gene-based MLST analysis showed that MVLST provided higher discriminatory power for serotype 1/2a and 4b strains than MLST. Cluster analysis based on the intragenic sequences of the selected virulence genes indicated a strain phylogeny closely related to serotypes and genetic lineages. In conclusion, MVLST may improve the discriminatory power of MLST and provide a convenient tool for studying the local epidemiology of L. monocytogenes.  相似文献   

8.
Xie Y  He Y  Gehring A  Hu Y  Li Q  Tu SI  Shi X 《PloS one》2011,6(12):e28276
A total of 108 S. aureus isolates from 16 major hospitals located in 14 different provinces in China were characterized for the profiles of 18 staphylococcal enterotoxin (SE) genes, 3 exfoliatin genes (eta, etb and etd), and the toxic shock syndrome toxin gene (tsst) by PCR. The genomic diversity of each isolate was also evaluated by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and accessory gene regulator (agr) typing. Of these strains, 90.7% (98/108) harbored toxin genes, in which tsst was the most prevalent toxin gene (48.1%), followed by sea (44.4%), sek (42.6%) and seq (40.7%). The see and etb genes were not found in any of the isolates tested. Because of high-frequency transfer of toxin gene-containing mobile genetic elements between S. aureus strains, a total of 47 different toxin gene combinations were detected, including a complete egc cluster in 19 isolates, co-occurrence of sea, sek and seq in 38 strains, and sec and sel together in 11 strains. Genetic typing by PFGE grouped all the strains into 25 clusters based on 80% similarity. MLST revealed 25 sequence types (ST) which were assigned into 16 clonal complexes (CCs) including 2 new singletons. Among these, 11 new and 6 known STs were first reported in the S. aureus strains from China. Overall, the genotyping results showed high genetic diversity of the strains regardless of their geographical distributions, and no strong correlation between genetic background and toxin genotypes of the strains. For genotyping S. aureus, PFGE appears to be more discriminatory than MLST. However, toxin gene typing combined with PFGE or MLST could increase the discriminatory power of genotyping S. aureus strains.  相似文献   

9.
Using Amplified Fragment Length Polymorphism (AFLP) analysis of isolates from 23 phage types, we isolated 11 molecular markers that are potentially useful for molecular typing of Salmonella enterica serovar typhimurium. We tested these and 11 previously studied markers for their ability to discriminate among isolates and for correlation of their distribution with phage types. The Simpson's index of discriminatory power for the molecular markers is 0.96. One hundred and twenty one isolates from 33 phage types tested were divided into 51 types which are further grouped into 24 patterns. Eight patterns can unambiguously identify 8 phage types and a further 12 correlated with phage type distribution, showing the usefulness of these markers for molecular phage typing.  相似文献   

10.
In the era of pneumococcal conjugate vaccines, surveillance of pneumococcal disease and carriage remains of utmost importance as important changes may occur in the population. To monitor these alterations reliable genotyping methods are required for large-scale applications. We introduced a high throughput multiple-locus variable number tandem repeat analysis (MLVA) and compared this method with pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The MLVA described here is based on 8 BOX loci that are amplified in two multiplex PCRs. The labeled PCR products are sized on an automated DNA sequencer to accurately determine the number of tandem repeats. The composite of the number of repeats of the BOX loci makes up a numerical profile that is used for identification and clustering. In this study, MLVA was performed on 263 carriage isolates that were previously characterized by MLST and PFGE. MLVA, MLST and PFGE (cut-off of 80%) yielded 164, 120, and 87 types, respectively. The three typing methods had Simpson's diversity indices of 98.5% or higher. Congruence between MLST and MLVA was high. The Wallace of MLVA to MLST was 0.874, meaning that if two strains had the same MLVA type they had an 88% chance of having the same MLST type. Furthermore, the Wallace of MLVA to clonal complex of MLST was even higher: 99.5%. For some isolates belonging to a single MLST clonal complex although displaying different serotypes, MLVA was more discriminatory, generating groups according to serotype or serogroup. Overall, MLVA is a promising genotyping method that is easy to perform and a relatively cheap alternative to PFGE and MLST. In the companion paper published simultaneously in this issue we applied the MLVA to assess the pneumococcal population structure of isolates causing invasive disease in The Netherlands before the introduction of the 7-valent conjugate vaccine.  相似文献   

11.
目的:对一起沙门菌引起的食源性疾病爆发进行溯源分析。方法:采用GB4789法对采集的样品进行分离及鉴定,采用16S r RNA基因分型方法及PFGE分型方法对分离的菌株进行分子生物学分析,并对爆发进行溯源分析。结果:生化及血清学结果表明,该起爆发分离的菌型为伦敦沙门氏菌。16S r RNA基因分型表明爆发所分离的菌株均为肠道沙门菌肠道亚种,菌株12 sam与其他4个菌株分子发育距离较远,均为16S r RNA基因分型的TYPE1-11型;PFGE分型结果表明菌株10 sam、16 sam、27 sam及29sam的PFGE带型相似度为100%,菌株12sam跟其他菌株相似率为96%。结论:GB4789法结果表明该起爆发是由伦敦沙门氏菌引起的,16S r RNA基因分型及PFGE分型方法的结果均表明该起食源性疾病来源一致。  相似文献   

12.
13.
The multiple-locus variable-number tandem-repeats analysis (MLVA) method for genotyping has proven to be a fast and reliable typing tool in several bacterial species. MLVA is in our laboratory the routine typing method for Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli O157. The gram-positive bacteria Listeria monocytogenes, while not isolated as frequent as S. Typhimurium and E. coli, causes severe illness with an overall mortality rate of 30%. Thus, it is important that any outbreak of this pathogen is detected early and a fast trace to the source can be performed. In view of this, we have used the information provided by two fully sequenced L. monocytogenes strains to develop a MLVA assay coupled with high-resolution capillary electrophoresis and compared it to pulsed-field gel electrophoresis (PFGE) in two sets of isolates, one Norwegian (79 isolates) and one Swedish (61 isolates) set. The MLVA assay could resolve all of the L. monocytogenes serotypes tested, and was slightly more discriminatory than PFGE for the Norwegian isolates (28 MLVA profiles and 24 PFGE profiles) and opposite for the Swedish isolates (42 MLVA profiles and 43 PFGE profiles).  相似文献   

14.
We have assessed the performance of semi-automated rep-PCR (Diversilab®) and multilocus sequence typing (MLST) in comparison to pulsed-field gel electrophoresis (PFGE) for typing a collection of 29 epidemiologically characterized vancomycin-resistant Enterococcus faecium (VRE). Sixteen strains that harbored the Tn1546 element were typed by PCR mapping. The discriminative power of the typing methods was calculated by the Simpson's index of diversity, and the concordance between methods was evaluated by the Kendall's coefficient of concordance. Semi-automated rep-PCR appeared as discriminative as PFGE and was further compared with PFGE for typing 67 VRE isolated during a hospital outbreak. Rep-PCR appeared to be more discriminative than PFGE for this second set of strains. Reproducibility of DiversiLab® was also tested against 35 selected isolates. Only three showed less than 97% similarity, indicating high reproducibility at this level of discrimination. In conclusion, semi-automated rep-PCR is a useful tool for rapid screening of VRE isolates during an outbreak, although cost of the system may be limiting for routine implementation. PFGE, which remains the reference method, should be used for confirmation and evaluation of the genetic relatedness of epidemic isolates.  相似文献   

15.
16.
Streptococcus agalactiae (or group B streptococcus; GBS) is a leading cause of neonatal morbidity and mortality in the developed countries. Several epidemiological typing tools have been developed for GBS to investigate the association between genotype and disease and to assess genetic variations within genogroups. This study compared the semi-automated repetitive sequence-based PCR Diversilab® system (DL) with MLST and pulsed field gel electrophoresis (PFGE) for determining the relatedness of invasive GBS strains. We analysed 179 unrelated GBS strains isolated from adult (n = 108) and neonatal (n = 71) invasive infections. By MLST, strains were resolved into 6 clonal complexes (CCs) including 23 sequence-types (STs), and 4 unique STs, whereas DL differentiated these isolates into 12 rep-PCR clusters (rPCs) and 9 unique rep-PCR types. The discriminatory power of both methods was similar, with Simpson's diversity indexes of 71.9% and 70.6%, respectively. However, their clustering concordance was low with Wallace concordance coefficients inferior to 0.4. PFGE was performed on 31 isolates representative of the most relevant DLrPCs clustered within the 3 major MLST CCs (CC-17, CC-23 and CC-1). As already observed with MLST, the concordance of DL with PFGE was low for all three CCs (Wallace coefficient < 0.5), PFGE being more discriminative than rep-PCR. In summary, this work suggests that DL is less appropriate than MLST or PFGE to study GBS population genetic diversity.  相似文献   

17.
目的对辽宁省2011-2012年间鸡肉中检测出的沙门菌进行耐药谱分析和PFGE分子分型分析,为沙门菌的监测、暴发预警提供依据。方法 Phoenix-100全自动微生物鉴定/药敏系统做耐药性分析;PFGE分型依据国际实验室分子分型监测网络PulseNet中沙门菌PFGE分型标准化方案进行。结果鸡肉中38株沙门菌均多重耐药,PFGE指纹图谱与血清具有一定的相关性,相同血清型的菌株聚类后,都能分到同一群。结论同一地区的沙门菌具有很高的相似带型,为以实验室为基础的食源性疾病暴发的发现及疫情控制提供依据。  相似文献   

18.
Enterococcus faecalis represents recently an important etiological agent of health care-associated infections (HAIs) and there is a need for evaluation and comparison of typing methods available for this microorganism. We tested multilocus VNTR (variable-number tandem repeats) analysis (MLVA) on a well-characterized collection of 153 clinical isolates of E. faecalis, corresponding to 52 multilocus sequence types and 67 pulsed-field gel electrophoresis (PFGE) profiles. MLVA showed high discriminatory power, discerning 111 different types (diversity index equal 98.9%). The concordance MLVA/MLST and MLVA/PFGE was 0.95 and 0.74, respectively. High discriminatory power of MLVA indicates its utility for local epidemiology such as outbreak investigation, and for differentiation of clones defined by other methods.  相似文献   

19.
To compare the two Acinetobacter baumannii multi-locus sequence typing (MLST) schemes and to assess their suitability to aid in outbreak analysis we investigated the molecular epidemiology of 99 Acinetobacter baumannii isolates representing outbreak-related and sporadic isolates from 24 hospitals in four different countries (Germany, Poland, Sweden, and Turkey). Pulsed-field gel electrophoresis (PFGE) was used as the reference method to determine the epidemiologic relatedness of isolates and compared to MLST using both the Oxford and Pasteur scheme. Rep-PCR was used to define international clonal lineages (IC). We identified 26 unique outbreak strains and 21 sporadic strains. The majority of outbreaks were associated with carbapenem-resistant A. baumannii harbouring oxacillinase OXA-23-like and corresponding to IC 2. Sequence types (STs) obtained from the Oxford scheme correlate well with PFGE patterns, while the STs of the Pasteur scheme are more in accordance with rep-PCR grouping, but neither one is mirroring completely the results of the comparator. On two occasions the Oxford scheme identified two different STs within a single outbreak where PFGE patterns had only one band difference. The CCs of both MLST schemes were able to define clonal clusters that were concordant with the ICs determined by rep-PCR. IC4 corresponds to the previously described CC15 Pasteur (= CC103 Oxford). It can be concluded that both MLST schemes are valuable tools for population-based studies. In addition, the higher discriminatory power of the Oxford scheme that compares with the resolution obtained with PFGE can often aid in outbreak analysis.  相似文献   

20.
Campylobacter jejuni is one of the leading bacterial causes of food-borne illness in the USA. Molecular typing methods are often used in food safety for identifying sources of infection and pathways of transmission. Moreover, the identification of genetically related isolates (i.e., clades) may facilitate the development of intervention strategies for control and prevention of food-borne diseases. We analyzed the pan genome (i.e., core and variable genes) of 63 C. jejuni isolates recovered from chickens raised in conventional, organic, and free-range poultry flocks to gain insight into the genetic diversity of C. jejuni isolates recovered from different environments. We assessed the discriminatory power of three genotyping methods [i.e., pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and repetitive extragenic palindromic polymerase chain reaction (rep-PCR)]. The rep-PCR fingerprint was generated by determining the presence of repetitive sequences that are interspersed throughout the genome via repetitive extragenic palindromic PCR, enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and BOX element PCR (BOX-PCR) and combining the data to form a composite fingerprint. The genetic fingerprints were subjected to computer-assisted pattern analysis. Comparison of the three genotypic methods revealed that repREB-PCR showed greater discriminatory power than PFGE and MLST. ERIC-PCR and BOX-PCR yielded the highest number of PCR products and greatest reproducibility. Regardless of the genotyping method, C. jejuni isolates recovered from chickens reared in conventional, organic, and free-range environments all exhibit a high level of genotypic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号