首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors have developed an analytical model to study In0.53Ga0.47As and InP junction field-effect transistors (JFETs) for use in InP-based optoelectronic integrated circuits (OEICs). This model includes the effects of channel resistance and band-to-band tunneling. The agreement between the calculations and experimental results supports the validity of the model. The authors discuss the optimum design for these JFETs and compare their performance quantitatively. In order to prevent device performance from being degraded by the effects of tunneling, the optimum channel dopings of In 0.53Ga0.47As and InP JFETs are found to be 7×1016 and 5×1017 cm-3, respectively. In0.53Ga0.47As JFETs not operated in the tunneling regime show at least a 40% higher efficiency than InP JFETs in terms of the power dissipated per transconductance. The authors conclude that In0.53Ga0.47As JFETs are well suited for very-high-density monolithic integration, where power efficiency must be high  相似文献   

2.
InP/In0.53Ga0.47As/InP double heterojunction bipolar transistors (HBTs) were grown on GaAs substrates. A 140 GHz power-gain cutoff frequency fmax and a 207 GHz current-gain cutoff frequency fτ were obtained, presently the highest reported values for metamorphic HBTs. The breakdown voltage BVCEO was 5.5 V, while the dc current gain β was 76. High-thermal-conductivity InP metamorphic buffer layers were employed in order to minimize the device-thermal resistance  相似文献   

3.
A self aligned In0.52Al0.48As/In0.53 Ga0.47As double heterojunction bipolar transistor (HBT) with a graded heterointerface has been grown by molecular-beam epitaxy (MBE) and tested. The DC characteristics of HBT structures with a compositionally graded junction using a linear graded In0.53Ga0.47-xAlxAs between two ternary layers were investigated. Typical quaternary graded devices with an emitter dimension of 50×50 μm2 exhibited a current gain as high as 1260, as compared to 800 for abrupt devices, at a collector current density of 2.8×103 A/cm2  相似文献   

4.
Depletion-mode doped-channel field effect transistors (DCFETs) using a AlAs0.56Sb0.44/In0.53Ga0.47 As heterostructure with multiple channels grown by molecular beam epitaxy (MBE) on an InP substrate are presented. Devices with gate lengths ranging from 0.2 μm to 1.0 μm have been fabricated. Three doped In0.53Ga0.47As channels separated by undoped AlAs0.56Sb0.44 layers are used for the devices. The devices exhibit unity current gain cut-off frequencies typically between 18 GHz and 73 GHz and corresponding maximum oscillation frequencies typically between 60 GHz and 160 GHz. The multiple channel approach results in wide linearity of dc and RF performance of the device  相似文献   

5.
The quaternary In0.52(AlxGa1-x) 0.48As compound on InP substrates is an important material for use in optoelectronic and microwave devices. We systematically investigated the electrical properties of quaternary In0.52(AlxGa1-x)0.48As layers, and found a 10% addition of Ga atoms into the InAlAs layer improves the Schottky diode performance. The energy bandgap (Eg ) for the In0.52(AlxGa1-x)0.48As layer was (0.806+0.711x) eV, and the associated conduction-band discontinuity (ΔEc), in the InAlGaAs/In0.53Ga0.47 As heterojunction, was around (0.68±0.01)ΔEg . Using this high quality In0.52(Al0.9Ga0.1)0.48As layer in the Schottky and buffer layers, we obtained quaternary In0.52(Al0.9Ga0.1)0.48As/In 0.53Ga0.47As HEMTs. This quaternary HEMT revealed excellent dc and microwave characteristics. In comparison with the conventional InAlAs/InGaAs HEMT's, quaternary HEMT's demonstrated improved sidegating and device reliability  相似文献   

6.
We demonstrate greater than 90% quantum efficiency in an In0.53Ga0.47As photodetector with a thin (900 Å) absorbing layer. This was achieved by inserting the In0.53 Ga0.47As/InP epitaxial layer into a microcavity composed of a GaAs/AlAs quarter-wavelength stack (QWS) and a Si/SiO2 dielectric mirror. The 900-Å-thick In0.53 Ga0.47As layer was wafer fused to a GaAs/AlAs mirror, having nearly 100% power reflectivity. A Si/SiO2 dielectric mirror was subsequently deposited onto the wafer-fused photodiode to form an asymmetric Fabry-Perot cavity. The external quantum efficiency and absorption bandwidth for the wafer-fused RCE photodiodes were measured to be 94±3% and 14 nm, respectively. To our knowledge, these wafer-fused RCE photodetectors have the highest external quantum efficiency and narrowest absorption bandwidth ever reported on the long-wavelength resonant-cavity-enhanced photodetectors  相似文献   

7.
New In0.52Al0.48As/In0.53Ga0.47 As transferred-substrate high electron mobility transistors (TS-HEMTs) have been successfully fabricated on 2-in Silicon substrate with 0.12 μm T-shaped gate length. These new TS-HEMTs exhibit typical drain currents of 450 mA/mm and extrinsic transconductance up to 770 mS/mm. An extrinsic current gain cutoff frequency fT of 185 GHz is obtained. That result is the first reported for In0.52Al0.48As/In0.53Ga0.47 As TS-HEMTs on Silicon substrate  相似文献   

8.
P-n-p In0.52Al0.48As/In0.53Ga0.47 As double-heterojunction bipolar transistors with a p+-InAs emitter cap layer grown by molecular-beam epitaxy have been realized and tested. A five-period 15-Å-thick In0.53Ga0.47As/InAs superlattice was incorporated between the In0.53Ga0.47As and InAs cap layer to smooth out the valence-band discontinuity. Specific contact resistance of 1×10-5 and 2×10-6 Ω-cm2 were measured for nonalloyed emitter and base contacts, respectively. A maximum common emitter current gain of 70 has been measured for a 1500-Å-thick base transistor at a collector current density of 1.2×103 A/cm2. Typical current gains of devices with 50×50-μm2 emitter areas were around 50 with ideality factors of 1.4  相似文献   

9.
The mean time to failure (MTTF) was measured for a statistically significant population of planar In0.53Ga0.47As/InP heterostructure p-i-n photodetectors at several elevated temperatures. The probability for failure is fit to a log-normal distribution, with the result that the width of the failure distribution is σ=0.55±0.2, and is roughly independent of temperature. From the temperature dependence of MTTF data, it is found that the failure mechanism is thermally activated, with an activation energy of less than 1.5±0.2 eV measured in the temperature range of 170-250°C. This extrapolates to a MTTF of less than 0.1 failure in 109 h (or <0.1 FIT) at 70°C, indicating that such devices are useful for systems requiring extremely high reliable components, even if operated at elevated temperatures for significant time periods. This activation energy is the highest value reported for In0.53Ga0.47As/InP photodetectors, and is significantly higher than the energies of ~0.85 eV often suspected for these devices  相似文献   

10.
The electron transfer from a narrow to a wide quantum well through a thin barrier is studied in the non-resonant case by time-resolved photoluminescence. The two systems In0.53Ga0.47As/InP and GaAs/Al0.35Ga0.65As are compared. Space charge effects are investigated and discussed. Contributions of holes to the tunneling process are determined.  相似文献   

11.
For pt.I see ibid., p.957-65. The receiver under study consists of an In0.53Ga0.47As p-i-n photodiode and an In0.53Ga0.47As or InP JFET transimpedance preamplifier. For this study, the two-region JFET model developed in pt.I is extended to include the dependence of receiver noise on transistor design. The authors find that the channel doping should be small enough to avoid shot noise due to the onset of tunneling current between the gate and drain, where as it must be large enough to provide adequate gain. Also, they show that the receiver sensitivity is not a strong function of input FET gate width. Hence, for circuits with high device density, the gate width and the FET power dissipation can be an order of magnitude less than for those structures currently investigated, thereby incurring a sensitivity penalty of only 1 dB as against wide-gate transistors. Optimized receivers using either InP or In0.53Ga0.47As JFETs are found to have comparable sensitivities  相似文献   

12.
Temperature-dependent measurements from 25 to 125°C have been made of the DC I-V characteristics of HBTs with GaAs and In0.53Ga0.47As collector regions. It was found that the GaAs HBTs have very low output conductance and high collector breakdown voltage BVCEO>10 V at 25°C, which increases with temperature. In striking contrast, the In0.53Ga0.47As HBTs have very high output conductance and low BVCEO~2.5 V at 25°C, which actually decreases with temperature. This different behavior is explained by the >104 higher collector leakage current, ICO, in In0.53Ga0.47As compared to GaAs due to bandgap differences. It is also shown that device self-heating plays a role in the I-V characteristics  相似文献   

13.
We investigated 60-nm In0.52Al0.48As/In0.53Ga0.47As pseudomorphic high-electron mobility transistors (p-HEMTs) fabricated by using a Ne-based atomic-layer-etching (ALET) technology. The ALET process produced a reproducible etch rate of 1.47 Aring/cycle for an InP etch stop layer, an excellent InP etch selectivity of 70 against an In0.52Al0.48As barrier layer, and an rms surface-roughness value of 1.37 Aring for the exposed In0.52Al0.48As barrier after removing the InP etch stop layer. The application of the ALET technology for the gate recess of 60-nm In0.52Al0.48As/In0.53Ga0.47As p-HEMTs produced improved device parameters, including transconductance (GM), cutoff frequencies (fT)> and electron saturation velocity (vsat) in the channel layer, which is mainly due to the high etch selectivity and low plasma-induced damage to the gate area. The 60-nm In0.52Al0.48As/In0.53Ga0.47As p-HEMTs fabricated by using the ALET technology exhibited GM,Max = 1-17 S/mm, fT = 398 GHz, and vsat = 2.5 X 107 cm/s.  相似文献   

14.
High-performance InP/In0.53Ga0.47As metamorphic heterojunction bipolar transistors (MHBTs) on GaAs substrate have been fabricated using InxGa1-xP strain relief buffer layer grown by solid-source molecular beam epitaxy (SSMBE). The MHBTs exhibited a dc current gain over 100, a unity current gain cutoff frequency (fT) of 48 GHz and a maximum oscillation frequency (fMAX) of 42 GHz with low junction leakage current and high breakdown voltages. It has also been shown that the MHBTs have achieved a minimum noise figure of 2 dB at 2 GHz (devices with 5×5 μm 2 emitter) and a maximum output power of 18 dBm at 2.5 GHz (devices with 5×20 μm2 emitter), which are comparable to the values reported on the lattice-matched HBTs (LHBTs). The dc and microwave characteristics show the great potential of the InP/InGaAs MHBTs on GaAs substrate for high-frequency and high-speed applications  相似文献   

15.
The authors report the first demonstration of In0.52Al 0.48As/In0.53Ga0.47As metal-semiconductor-metal (MSM) photodetectors and high-electron-mobility transistors (HEMTs) grown on GaAs substrates by organometallic chemical vapor deposition. Both photodetectors and transistors showed no degradation in performance compared to devices simultaneously grown on InP substrates. The photodetectors exhibited a responsivity of 0.45 A/W and leakage current of 10 to 50 nA. The HEMTs with a gate length of 1.0 μm showed a transconductance as high as 250 mS/mm, and fT and fmax of 25 and 70 GHz, respectively  相似文献   

16.
Impact ionization is a major limiting factor to the maximum operating voltage of InGaAs-based, high-speed transistors. In this work, data on the positive temperature dependence of the electron impact ionization coefficient αn in In0.53Ga0.47As at medium-low electric fields are reported for the first time. The increase of αn with temperature is opposite to the behavior normally observed in most semiconductors. This anomalous behavior implies the onset of a positive feedback between power dissipation and avalanche generation which may adversely affect the power handling capability of In0.53Ga 0.47As-based devices, and which should be taken into account in device thermal modeling. In the experimental procedure, based on the measurement of the multiplication factor M-1 in npn In0.53Ga 0.47As/InP Heterojunction Bipolar Transistors (HBT), particular care has been taken in order to rule out possible spurious, temperature-dependent contributions to the measured multiplication current  相似文献   

17.
In0.52Al0.48As/In0.53Ga0.47 As/InP heterostructure insulated-gate field-effect transistors (HIGFETs) with gate lengths from 1.1 and 0.3 μm have been fabricated, and their electrical performance is characterized at DC and microwave frequencies. The refractory-gate self-aligned process, applied to devices with In0.53Ga0.47As channels, yields an unprecedented combination of very-high speed and excellent uniformity. HIGFETs with Lg=0.6 μm showed average peak transconductance gm of 528 mS/mm and unity-current-gain cutoff frequency ft of 50 GHz. The uniformity of gm was better than 1%, and the voltage of the gm peak was uniform to ±30 mV. HIGFETs with Lg=0.3 μm showed f1 up to 63 GHz, but suffered from serious short-channel effect, due to excessive thickness of the InGaAs channel layer. A self-aligned technique for gate resistance reduction is shown to substantially improve microwave power gain  相似文献   

18.
The first InGaAs/InP charge-coupled device (CCD) is demonstrated, exhibiting a charge transfer efficiency (CTE) of 0.98 at 13 MHz and 1 GHz. Cooling the device improves the CTE to greater than 0.99 at 13-MHz clock frequency. The 0.76-eV In0.53Ga0.47As bandgap makes this structure applicable to direct-detection short-wavelength infrared (SWIR) imagers  相似文献   

19.
The design and performance of In0.53Ga0.47As/In0.52Al0.48 As modulation-doped field-effect transistors (MODFETs) have been optimized by incorporating a single In0.53Ga0.47As quantum-well channel and a thin strained GaAs gate barrier layer. These help to lower the output conductance and gate leakage current of the device, respectively. The DC performance of 1-μm-gate devices is characterized by extrinsic transconductances of 320 mS/mm at 300 K and 450 mS/mm at 77 K and a best value of fT=35 GHz is derived from S-parameter measurements  相似文献   

20.
Low-temperature microwave measurements of both lattice-matched and pseudomorphic InxGa1-xAs/In0.48As (x=0.53, 0.60, and 0.70) channel MODFETs on InP substrates were carried out in a cryogenic measurement system. The measurements were done in the temperature range of 77 to 300 K and in the frequency range of 0.5 to 11.0 GHz at different bias conditions. The cutoff frequency ( fT) for the InxGa1-xAs/In0.52Al0.48As MODFETs improved from 22 to 29 GHz, 29 to 38 GHz, and 39 to 51 GHz, for x=0.53, 0.60, and 0.70, respectively, as the temperature was lowered from 300 to 77 K, which is approximately a 31% increase at each composition. No degradations were observed in device performance. These results indicate an excellent potential of the pseudomorphic devices at low temperatures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号