首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The four dengue virus serotypes (DENV1–4) are mosquito-borne flaviviruses that infect ∼390 million people annually; up to 100 million infections are symptomatic, and 500,000 cases progress to severe disease. Exposure to a heterologous DENV serotype, the specific infecting DENV strains, and the interval of time between infections, as well as age, ethnicity, genetic polymorphisms, and comorbidities of the host, are all risk factors for severe dengue. In contrast, neutralizing antibodies (NAbs) are thought to provide long-lived protection against symptomatic infection and severe dengue. The objective of dengue vaccines is to provide balanced protection against all DENV serotypes simultaneously. However, the association between homotypic and heterotypic NAb titers and protection against symptomatic infection remains poorly understood. Here, we demonstrate that the titer of preinfection cross-reactive NAbs correlates with reduced likelihood of symptomatic secondary infection in a longitudinal pediatric dengue cohort in Nicaragua. The protective effect of NAb titers on infection outcome remained significant when controlled for age, number of years between infections, and epidemic force, as well as with relaxed or more stringent criteria for defining inapparent DENV infections. Further, individuals with higher NAb titers immediately after primary infection had delayed symptomatic infections compared with those with lower titers. However, overall NAb titers increased modestly in magnitude and remained serotype cross-reactive in the years between infections, possibly due to reexposure. These findings establish that anti-DENV NAb titers correlate with reduced probability of symptomatic DENV infection and provide insights into longitudinal characteristics of antibody-mediated immunity to DENV in an endemic setting.Dengue virus (DENV) is a mosquito-borne flavivirus that infects up to 390 million individuals each year (1). Although most infections are inapparent, ∼25% of infections cause acute febrile illness, which progresses to severe disease in half a million individuals annually (2). DENV consists of four evolutionarily distinct, antigenically related DENV serotypes, DENV1–4, and neutralizing antibodies (NAbs) against the four serotypes are considered a critical component of the protective immune response (3, 4). Primary (1°) DENV infection induces a NAb response that is described as increasingly type-specific over time, providing long-term protection against the 1° infecting serotype, but only transient protection against other DENV serotypes (5, 6). Cross-serotype protection against symptomatic infection is observed for up to 2 years after 1° infection, after which point individuals are at increased risk of symptomatic infection and severe dengue upon subsequent heterologous infection (710). Over time, cross-serotype–reactive antibodies are thought to decay to subneutralizing levels, binding, but not neutralizing, DENV and contributing to enhanced replication during heterologous infection by facilitating virus entry into target cells expressing Fc receptors (11). However, after subsequent infection with a different serotype, the NAb response becomes broadly neutralizing and is thought to reduce incidence of severe disease (12).There has been limited success in establishing the relationship between the level of preinfection NAb titers to DENV and risk of disease upon subsequent DENV infection in endemic settings. In recent vaccine trials, symptomatic disease was observed in individuals with relatively high NAb titers, raising concerns that the current immunologic assays do not measure the NAbs critical for protection (13). In studies of infants, who receive IgG antibodies by transplacental transfer from DENV-immune mothers, infants with higher NAb titers at birth generally, although not always, experienced symptomatic disease later than those with lower titers (1416). Recent studies in children and adults have made important advances in demonstrating an association between the quantity of cross-reactive preinfection NAb titers and reduced risk of symptomatic secondary (2°) infection, defined as two or more infections, but have not been conclusive: the association did not hold for all DENV serotypes (15, 17); exposure could not be proven for DENV-negative individuals (18); or the magnitude of preinfection NAb titers was not directly studied (12, 19). Thus, there is an urgent need to definitively establish whether NAb titers correlate with protection in endemic settings. Here, we estimated the relationship between preinfection NAb titers and probability of symptomatic infection and characterized determinants of long-term protection in children with multiple DENV infections in a pediatric dengue cohort study in Nicaragua.  相似文献   

2.
Three-quarters of the estimated 390 million dengue virus (DENV) infections each year are clinically inapparent. People with inapparent dengue virus infections are generally considered dead-end hosts for transmission because they do not reach sufficiently high viremia levels to infect mosquitoes. Here, we show that, despite their lower average level of viremia, asymptomatic people can be infectious to mosquitoes. Moreover, at a given level of viremia, DENV-infected people with no detectable symptoms or before the onset of symptoms are significantly more infectious to mosquitoes than people with symptomatic infections. Because DENV viremic people without clinical symptoms may be exposed to more mosquitoes through their undisrupted daily routines than sick people and represent the bulk of DENV infections, our data indicate that they have the potential to contribute significantly more to virus transmission to mosquitoes than previously recognized.With 3.97 billion people living in 128 countries currently at risk for infection, dengue viruses (DENV-1 to -4) cause more human morbidity and mortality worldwide than any other arthropod-borne virus (1, 2). Aedes aegypti mosquitoes are the primary vectors of DENV throughout the tropics (3). Dengue prevention relies on the control of Ae. aegypti populations, which is failing in most parts of the world due to lack of resources, lack of political will, and/or ineffective implementation (4).Virus transmission from infected humans to mosquitoes is a critical step in dengue epidemiology, but due to logistical constraints it has been directly examined only in a handful of studies to date (5). In initial experimental infections of human volunteers during the 1920s (6, 7), the onset of clinical symptoms occurred 4–9 d after virus inoculation by mosquito bite (8). DENV-infected humans were infectious to mosquitoes from 2 d before to 2 d after the onset of symptoms, and Ae. aegypti fed on viremic people were able to transmit virus to another person after at least 11 d of extrinsic incubation (8). Results from later studies indicated that, for naturally infected people with clinically apparent dengue, the duration of detectable viremia was on average 4–5 d after the onset of symptoms, but could range from 2 to 12 d (9, 10). Investigators in Vietnam fed Ae. aegypti directly on 208 symptomatic, hospitalized dengue patients and reported that the probability of successful human-to-mosquito DENV transmission was coincident with the kinetics of viremia (11). Dengue patients were infectious up to 5 d after the onset of symptoms, which generally corresponded with “defervescence” (11).All previous studies on human-to-mosquito DENV transmission were limited to people with overt illness and did not consider subclinical infections. An estimated 300 million of the total 390 million DENV infections per year are clinically inapparent or mildly symptomatic, i.e., no illness that disrupted a person’s daily routine (1). Following Grange et al. (12), we use “inapparent” or “subclinical” interchangeably to denote infections confirmed by virus detection or seroconversion, but with insufficient symptoms to be detected by existing surveillance systems and health care providers. “Asymptomatic” refers to a confirmed DENV infection in the complete absence of reported or detected symptoms. Inapparent human DENV infections are a potentially important component of the overall burden of dengue because they can serve as a previously unrecognized source of mosquito infection (12). Epidemic transmission of DENV associated with low viremia levels and mild illness has been reported (13). It has long been assumed, but not empirically verified, that people with inapparent infections fail to infect mosquitoes because they do not reach sufficiently high viremia levels (5). This assumption is based on the observation that disease severity is positively correlated with the magnitude of DENV viremia (10, 11, 14). To our knowledge, the only study that quantified viral RNA levels in a limited number of asymptomatic DENV infections in humans did not detect a significantly lower viremia (15), but infectiousness to mosquitoes was not evaluated. The aim of the present study was to document variation in DENV infectiousness of naturally infected humans across the spectrum of disease manifestations, including fully asymptomatic infections, and to verify the assumption that people with inapparent infections are not infectious to mosquitoes.  相似文献   

3.
We analyze data from the fall 2020 pandemic response efforts at the University of Colorado Boulder, where more than 72,500 saliva samples were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using qRT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified. The distribution of viral loads within these asymptomatic individuals was indistinguishable from what has been previously observed in symptomatic individuals. Regardless of symptomatic status, ∼50% of individuals who test positive for SARS-CoV-2 seem to be in noninfectious phases of the disease, based on having low viral loads in a range from which live virus has rarely been isolated. We find that, at any given time, just 2% of individuals carry 90% of the virions circulating within communities, serving as viral “supercarriers” and possibly also superspreaders.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that emerged into the human population in late 2019 (1), presumably from animal reservoirs (2, 3). During the ensuing world-wide pandemic, already more than 3 million lives have been lost due to the virus. Spread of SARS-CoV-2 has thus far been extremely difficult to contain. One key reason for this is that both presymptomatic and asymptomatic infected individuals can transmit the virus to others (413). Further, it is becoming clear that certain individuals play a key role in seeding superspreading events (1417). Here, we analyzed data from a large university surveillance program. Viral loads were measured in saliva, which has proven to be an accessible and reliable biospecimen in which to identify carriers of this respiratory pathogen, and the most likely medium for SARS-CoV-2 transmission (1820). Our dataset is unique in that all SARS-CoV-2−positive individuals reported no symptoms at the time of saliva collection, and therefore were infected but asymptomatic or presymptomatic. We find that the distribution of SARS-CoV-2 viral loads on our campus is indistinguishable from what has previously been observed in symptomatic and hospitalized individuals. Strikingly, these datasets demonstrate dramatic differences in viral levels between individuals, with a very small minority of the infected individuals harboring the vast majority of the infectious virions.  相似文献   

4.
Dengue virus (DENV) subdues cell membranes for its cellular cycle by reconfiguring phospholipids in humans and mosquitoes. Here, we determined how and why DENV reconfigures phospholipids in the mosquito vector. By inhibiting and activating the de novo phospholipid biosynthesis, we demonstrated the antiviral impact of de novo–produced phospholipids. In line with the virus hijacking lipids for its benefit, metabolomics analyses indicated that DENV actively inhibited the de novo phospholipid pathway and instead triggered phospholipid remodeling. We demonstrated the early induction of remodeling during infection by using isotope tracing in mosquito cells. We then confirmed in mosquitoes the antiviral impact of de novo phospholipids by supplementing infectious blood meals with a de novo phospholipid precursor. Eventually, we determined that phospholipid reconfiguration was required for viral genome replication but not for the other steps of the virus cellular cycle. Overall, we now propose that DENV reconfigures phospholipids through the remodeling cycle to modify the endomembrane and facilitate formation of the replication complex. Furthermore, our study identified de novo phospholipid precursor as a blood determinant of DENV human-to-mosquito transmission.

Dengue virus (DENV) threatens more than half of the world population due to the global and expanding distribution of its mosquito vector, Aedes aegypti (1, 2). As an enveloped virus with a single-stranded positive-sense RNA genome [(+)gRNA], DENV relies on the host lipid membrane for its cellular cycle. Entry through endocytosis is mediated by attachment of envelope lipids to plasma membrane receptors (3). Upon internalization, the DENV envelope fuses with the plasma membrane, releasing the viral genome into the cytosol (4). The single open reading frame (ORF) is translated into a transmembrane polyprotein by ribosomes associated with the endoplasmic reticulum (ER) membrane (5). After cleavage by host and viral proteases, nonstructural viral proteins induce ER invaginations to form vesicle packets (VPs), encompassing clusters of double-membrane vesicles (Ve), which house the genome replication complex (6). The negative-sense RNA genome [(−)gRNA] is produced from the entering (+)gRNA and serves as a template for (+)gRNA production. VP and Ve structures enable efficient replication and protect the virus from host intracellular antiviral defense systems. On the ER, the nascent (+)gRNA is encapsidated and assembled into a lipid bilayer virion by host and virus structural proteins (7). Viral particles bud in the ER lumen and undergo maturation through the Golgi and trans-Golgi membrane networks (8), before release into extracellular space by fusion between endosome and plasma membranes.Plasma and endosomal membranes are mainly composed of phospholipids (PL) (9). PLs contain one hydrophilic head group, a glycerol backbone, and two hydrophobic fatty acyl chains. Because of their amphiphilic nature, bilayer associations of PLs form cellular barriers. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) represent more than 50% of cellular PL content, while in dipterans PE appears to be the predominant membrane constituent (10). PE and PC de novo biosynthesis occurs in the ER through parallel branches of the highly conserved Kennedy pathway: the cytidine 5′-diphosphate (CDP)–ethanolamine and CDP–choline pathways (9, 11, 12). In these pathways, one ethanolamine (Etn) or choline (Cho) is integrated into one diacylglycerol (DAG) to form one PE or PC, respectively (13). PE or PC then forms phosphatidylserine (PS) by a head group exchange reaction, while the reverse reaction of PS into PE also occurs (14, 15). PC, PE, and PS are called aminophospholipids (AminoPLs) based on their amine head group. Remodeling of PLs occurs through the Lands cycle (12, 16) by deacylation of one acyl chain to form lysophospholipid (LysoPL) and subsequent reacylation with a different acyl to generate a new PL species. While de novo PLs mostly contain saturated and monounsaturated acyls, remodeling is thought to increase unsaturation. Together, de novo synthesis and remodeling of PLs ensure maintenance and rearrangement of membrane composition, which determines membrane properties and structures (17). The polar head group and parallel acyl chains of PC result in a cylindrical geometry that forms planar bilayer membranes. The small head group of PE confers an inverted conical geometry, inducing negative curvature (18). Conversely, LysoPC and LysoPE with one acyl chain promote positive curvature and membrane defects that increase permeability (18), which regulates the integration of solutes to and from the cytosol. Composition of PL acyl chains also determines membrane behavior. High concentration of unsaturated PL leads to low lipid packing, increasing membrane fluidity (19, 20).Cellular membranes undergo drastic modifications during DENV infection (6, 21), as illustrated by the large PL reconfiguration in both humans and mosquitoes (2224). Understanding how DENV alters PL composition and the function of these alterations will provide insight into the virus biology that can be harnessed to design anti-DENV interventions. Recently, we described a major AminoPL reconfiguration throughout the DENV cycle in Ae. aegypti cells and mosquitoes (23). This reconfiguration is partially mediated by DENV-induced down-regulation of acylglycerolphosphate acyltransferase 1 (AGPAT1), which leads to a proviral environment. As AGPAT1 synthesizes the DAG precursor phosphatidic acid (PA), our preliminary study suggests that DENV-mediated inhibition of the de novo PL pathway favors infection. Here, we aim to decipher how DENV reconfigures AminoPL in mosquitoes—disentangling the role of de novo biosynthesis and remodeling—and the function of AminoPL reconfiguration in the virus cellular cycle. We used enzyme depletion to inhibit the de novo pathway and precursor supplementation to activate it. We confirmed these effects with metabolomic analysis and showed that de novo AminoPL synthesis is detrimental to DENV in vitro. Accordingly, we observed that DENV actively inhibits the de novo pathway and instead induces remodeling. Using pioneering lipid isotopic labeling methods in mosquito cells, we confirmed that the DENV AminoPL reconfiguration is initiated through remodeling. Importantly, we observed that activation of de novo PL biosynthesis in mosquitoes by supplementing infectious blood with de novo precursor reduced infection, thereby identifying a blood metabolite that reduces mosquito infection. Finally, we demonstrated that activation of the de novo pathway does not alter virus attachment, internalization, translation, or particle production but hampers replication, diminishing production of infectious particles.  相似文献   

5.
6.
Infection with the flavivirus Zika virus (ZIKV) can result in tissue tropism, disease outcome, and route of transmission distinct from those of other flaviviruses; therefore, we aimed to identify host machinery that exclusively promotes the ZIKV replication cycle, which can inform on differences at the organismal level. We previously reported that deletion of the host antiviral ribonuclease L (RNase L) protein decreases ZIKV production. Canonical RNase L catalytic activity typically restricts viral infection, including that of the flavivirus dengue virus (DENV), suggesting an unconventional, proviral RNase L function during ZIKV infection. In this study, we reveal that an inactive form of RNase L supports assembly of ZIKV replication factories (RFs) to enhance infectious virus production. Compared with the densely concentrated ZIKV RFs generated with RNase L present, deletion of RNase L induced broader subcellular distribution of ZIKV replication intermediate double-stranded RNA (dsRNA) and NS3 protease, two constituents of ZIKV RFs. An inactive form of RNase L was sufficient to contain ZIKV genome and dsRNA within a smaller RF area, which subsequently increased infectious ZIKV release from the cell. Inactive RNase L can interact with cytoskeleton, and flaviviruses remodel cytoskeleton to construct RFs. Thus, we used the microtubule-stabilization drug paclitaxel to demonstrate that ZIKV repurposes RNase L to facilitate the cytoskeleton rearrangements required for proper generation of RFs. During infection with flaviviruses DENV or West Nile Kunjin virus, inactive RNase L did not improve virus production, suggesting that a proviral RNase L role is not a general feature of all flavivirus infections.

The flavivirus genus contains arthropod-transmitted viruses with a positive-sense single-stranded RNA (ssRNA) genome, including Zika virus (ZIKV), dengue virus (DENV), and West Nile virus (WNV). These viruses are transmitted by mosquitos and globally distributed, with high associated morbidity and mortality in humans (13). More recently, ZIKV sexual and vertical transmission has been recognized, the latter involving transplacental migration of the virus, potentially resulting in fetal microcephaly (49). Due to diversity in ZIKV tissue tropism, disease, and route of transmission as compared with other flaviviruses, it is possible that variances in ZIKV infection at the molecular level confer the observed shifts in clinical outcome at the organismal level. For this reason, we are interested in host machinery that supports the ZIKV replication cycle but not that of other flaviviruses, as this may improve our understanding of the molecular determinants of ZIKV pathogenesis.After entry into the host cell, the flavivirus genome, which also serves as the messenger RNA (mRNA), is directly translated at the endoplasmic reticulum (ER). Proximal to sites of translation, flaviviruses create replication factories (RFs) through extensive cytoskeletal rearrangements that generate invaginations in the folds of the ER membrane, within which new genome synthesis occurs (1015). These RFs contain ZIKV replication complex proteins, including the NS3 protease, the replication intermediate double-stranded RNA (dsRNA), as well as template genomic ssRNA. New genome is packaged into compartments at opposite ER folds, and new virions traffic through the transgolgi network and eventually bud from the plasma membrane (16). RFs therefore enable efficient throughput of key viral processes as centers of new genome synthesis linked with viral protein translation as well as new virus assembly. In addition, RFs serve as a protective barrier to impede cytosolic innate immune sensing, as flavivirus RNA predominantly resides within RFs during the bulk of the intracellular replication cycle.Innate immune sensors within the cytoplasm of the infected cell detect viral RNA to activate antiviral responses, including the type I interferon (IFN) and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) pathways. Extensive research has demonstrated that flaviviruses, including ZIKV, have evolved strategies for counteracting the type I IFN response (1722). Since OAS genes are IFN-stimulated genes and therefore up-regulated by type I IFN signaling, the OAS/RNase L pathway can also be potentiated by type I IFN production. However, activation of RNase L can occur in the absence of type I IFN responses when basal OAS expression is sufficient (23, 24). In either event, OAS sensors detect viral dsRNA and generate 2''-5''-oligoadenylates (2-5A). RNase L, which is constitutively expressed in an inactive form, homodimerizes upon 2-5A binding to become catalytically active (25). Active RNase L cleaves both host and viral ssRNA within the cell (Fig. 1). While there are three OAS isoforms, we have shown that the OAS3 isoform is the predominant activator of RNase L during infection with a variety of viruses including ZIKV (23, 26). Activated RNase L cleavage of host ribosomal RNA (rRNA) and mRNA as well as viral ssRNA ultimately inhibits virus infection (2631).Open in a separate windowFig. 1.Noncanonical RNase L function promotes infectious ZIKV production. (Left) Canonical RNase L antiviral activity. Viral dsRNA is detected by OAS3, which produces the small molecule 2-5A that binds inactive RNase L, inducing its homodimerization and catalytic activation, resulting in cleavage of host and viral ssRNA, leading to inhibition of viral infection. (Right) RNase L activity during ZIKV infection. ZIKV dsRNA is recognized by OAS3, which activates RNase L resulting in ssRNA cleavage; however, ZIKV production is improved with RNase L expression.Once activated, RNase L can restrict infection of a diverse range of DNA and RNA viruses, including flaviviruses DENV and WNV (30, 3234). Many viruses have subsequently developed mechanisms for evading RNase L antiviral effects, most of which target this pathway upstream of RNase L activation through sequestration of dsRNA, which prevents OAS activation, or by degradation of 2-5A (32, 3540). We recently showed that ZIKV avoids antiviral effects of activated RNase L and that this evasion strategy requires assembly of RFs to protect genome from RNase L cleavage (23). Despite substantial RNase L–mediated cleavage of intracellular ZIKV genome, a portion of uncleaved genome was shielded from activated RNase L within RFs. This genome was sufficient to produce high levels of infectious virus particles, as infectious ZIKV released from wild-type (WT) cells was significantly higher than from RNase L knockout (KO) cells. Unlike ZIKV, infectious DENV production was decreased by canonical RNase L antiviral activity (23, 33). These results indicated that RNase L expression was ultimately proviral during ZIKV infection (Fig. 1). As this was the initial report of viral resistance to catalytically active RNase L during infection, we sought to isolate the differences between ZIKV RFs and those constructed by other flaviviruses, to identify factors that enable this ZIKV evasion mechanism.In this study, we focused on elucidating how RNase L increases ZIKV production. An earlier study reported that an inactive form of RNase L interacts with the actin cytoskeleton to reorganize cellular framework during viral infection (41). Since flaviviruses reorganize the cellular cytoskeletal and organellar network during infection (11), we investigated the possibility that RNase L was exploited by ZIKV to assemble protective RFs that dually serve as a barrier against host sensors in addition to providing sites of replication.  相似文献   

7.
Blocking the action of FSH genetically or pharmacologically in mice reduces body fat, lowers serum cholesterol, and increases bone mass, making an anti-FSH agent a potential therapeutic for three global epidemics: obesity, osteoporosis, and hypercholesterolemia. Here, we report the generation, structure, and function of a first-in-class, fully humanized, epitope-specific FSH blocking antibody with a KD of 7 nM. Protein thermal shift, molecular dynamics, and fine mapping of the FSH–FSH receptor interface confirm stable binding of the Fab domain to two of five receptor-interacting residues of the FSHβ subunit, which is sufficient to block its interaction with the FSH receptor. In doing so, the humanized antibody profoundly inhibited FSH action in cell-based assays, a prelude to further preclinical and clinical testing.

Obesity and osteoporosis affect nearly 650 million and 200 million people worldwide, respectively (1, 2). Yet the armamentarium for preventing and treating these disorders remains limited, particularly when compared with public health epidemics of a similar magnitude. It has also become increasingly clear that obesity and osteoporosis track together clinically. First, body mass does not protect against bone loss; instead, obesity can be permissive to osteoporosis and a high fracture risk (3, 4). Furthermore, the menopausal transition marks the onset not only of rapid bone loss, but also of visceral obesity and dysregulated energy balance (59). These physiologic aberrations have been attributed traditionally to a decline in serum estrogen, although, during the perimenopause—2 to 3 y prior to the last menstrual period—serum estrogen is within the normal range, while FSH levels rise to compensate for reduced ovarian reserve (1012). In our view, therefore, the early skeletal and metabolic derangements cannot conceivably be explained solely by declining estrogen (13, 14).The past decade has shown that pituitary hormones can act directly on the skeleton and other tissues, a paradigm shift that is in stark contrast to previously held views on their sole regulation of endocrine targets (1525). We and others have shown that FSH can bypass the ovary to act on Gi-coupled FSH receptors (FSHRs) on osteoclasts to stimulate bone resorption and inhibit bone formation (26, 27). This mechanism, which could underscore the bone loss during early menopause, is testified by the strong correlations between serum FSH, bone turnover, and bone mineral density (79, 14, 16, 26). Likewise, activating polymorphisms in the FSHR in postmenopausal women are linked to a high bone turnover and reduced bone mass (27). It therefore made biological and clinical sense to inhibit FSH action during this period to prevent bone loss.Toward this goal, we generated murine polyclonal and monoclonal antibodies to a 13-amino-acid–long binding epitope of FSHβ (2831). The mouse and human FSHβ epitopes differ by just two amino acids; hence, blocking antibodies to the human epitope showed efficacy in mice (28). The antibodies displayed two sets of actions: they attenuated the loss of bone after ovariectomy by inhibiting bone resorption and stimulating bone formation and displayed profound effects on body composition and energy metabolism (28, 29, 31). Most notably, in a series of contemporaneously reproduced experiments, we (M.Z. and C.J.R.) found that FSH blockade reduced body fat, triggered adipocyte beiging, and increased thermogenesis in models of obesity, notably post ovariectomy and after high-fat diet (29). Our findings have been further confirmed independently by two groups who used a FSHβ–GST fusion protein or tandem repeats of the 13-amino-acid–long FSHβ epitope for studies on bone and fat, respectively (32, 33). Consistent with the mouse data, inhibiting FSH secretion using a GnRH agonist in prostate cancer patients resulted in low body fat compared with orchiectomy, wherein FSH levels are high (34). This interventional clinical trial provides evidence for a therapeutic benefit of reducing FSH levels on body fat in people. There is also new evidence that FSH blockade lowers serum cholesterol (35, 36).Thus, both emerging and validated datasets on the antiobesity, osteoprotective, and lipid-lowering actions of FSH blockade in mice and in humans prompted our current attempt to develop and characterize an array of fully humanized FSH-blocking antibodies for future testing in people. Here, we report that our lead first-in-class humanized antibody, Hu6, and two related molecules, Hu26 and Hu28, bind human FSH with a high affinity (KDs <10 nM), block the binding of FSH on the human FSHR, and inhibit FSH action in functional cell-based assays.  相似文献   

8.
Active matter comprises individually driven units that convert locally stored energy into mechanical motion. Interactions between driven units lead to a variety of nonequilibrium collective phenomena in active matter. One of such phenomena is anomalously large density fluctuations, which have been observed in both experiments and theories. Here we show that, on the contrary, density fluctuations in active matter can also be greatly suppressed. Our experiments are carried out with marine algae (Effreniumvoratum), which swim in circles at the air–liquid interfaces with two different eukaryotic flagella. Cell swimming generates fluid flow that leads to effective repulsions between cells in the far field. The long-range nature of such repulsive interactions suppresses density fluctuations and generates disordered hyperuniform states under a wide range of density conditions. Emergence of hyperuniformity and associated scaling exponent are quantitatively reproduced in a numerical model whose main ingredients are effective hydrodynamic interactions and uncorrelated random cell motion. Our results demonstrate the existence of disordered hyperuniform states in active matter and suggest the possibility of using hydrodynamic flow for self-assembly in active matter.

Active matter exists over a wide range of spatial and temporal scales (16) from animal groups (7, 8) to robot swarms (911), to cell colonies and tissues (1216), to cytoskeletal extracts (1720), to man-made microswimmers (2125). Constituent particles in active matter systems are driven out of thermal equilibrium at the individual level; they interact to develop a wealth of intriguing collective phenomena, including clustering (13, 22, 24), flocking (11, 26), swarming (12, 13), spontaneous flow (14, 20), and giant density fluctuations (10, 11). Many of these observed phenomena have been successfully described by particle-based or continuum models (16), which highlight the important roles of both individual motility and interparticle interactions in determining system dynamics.Current active matter research focuses primarily on linearly swimming particles which have a symmetric body and self-propel along one of the symmetry axes. However, a perfect alignment between the propulsion direction and body axis is rarely found in reality. Deviation from such a perfect alignment leads to a persistent curvature in the microswimmer trajectories; examples of such circle microswimmers include anisotropic artificial micromotors (27, 28), self-propelled nematic droplets (29, 30), magnetotactic bacteria and Janus particles in rotating external fields (31, 32), Janus particle in viscoelastic medium (33), and sperm and bacteria near interfaces (34, 35). Chiral motility of circle microswimmers, as predicted by theoretical and numerical investigations, can lead to a range of interesting collective phenomena in circular microswimmers, including vortex structures (36, 37), localization in traps (38), enhanced flocking (39), and hyperuniform states (40). However, experimental verifications of these predictions are limited (32, 35), a situation mainly due to the scarcity of suitable experimental systems.Here we address this challenge by investigating marine algae Effrenium voratum (41, 42). At air–liquid interfaces, E.voratum cells swim in circles via two eukaryotic flagella: a transverse flagellum encircling the cellular anteroposterior axis and a longitudinal one running posteriorly. Over a wide range of densities, circling E.voratum cells self-organize into disordered hyperuniform states with suppressed density fluctuations at large length scales. Hyperuniformity (43, 44) has been considered as a new form of material order which leads to novel functionalities (4549); it has been observed in many systems, including avian photoreceptor patterns (50), amorphous ices (51), amorphous silica (52), ultracold atoms (53), soft matter systems (5461), and stochastic models (6264). Our work demonstrates the existence of hyperuniformity in active matter and shows that hydrodynamic interactions can be used to construct hyperuniform states.  相似文献   

9.
Ciliary neurotrophic factor (CNTF) is a leading therapeutic candidate for several ocular diseases and induces optic nerve regeneration in animal models. Paradoxically, however, although CNTF gene therapy promotes extensive regeneration, recombinant CNTF (rCNTF) has little effect. Because intraocular viral vectors induce inflammation, and because CNTF is an immune modulator, we investigated whether CNTF gene therapy acts indirectly through other immune mediators. The beneficial effects of CNTF gene therapy remained unchanged after deleting CNTF receptor alpha (CNTFRα) in retinal ganglion cells (RGCs), the projection neurons of the retina, but were diminished by depleting neutrophils or by genetically suppressing monocyte infiltration. CNTF gene therapy increased expression of C-C motif chemokine ligand 5 (CCL5) in immune cells and retinal glia, and recombinant CCL5 induced extensive axon regeneration. Conversely, CRISPR-mediated knockdown of the cognate receptor (CCR5) in RGCs or treating wild-type mice with a CCR5 antagonist repressed the effects of CNTF gene therapy. Thus, CCL5 is a previously unrecognized, potent activator of optic nerve regeneration and mediates many of the effects of CNTF gene therapy.

Like most pathways in the mature central nervous system (CNS), the optic nerve cannot regenerate once damaged due in part to cell-extrinsic suppressors of axon growth (1, 2) and the low intrinsic growth capacity of adult retinal ganglion cells (RGCs), the projection neurons of the eye (35). Consequently, traumatic or ischemic optic nerve injury or degenerative diseases such as glaucoma lead to irreversible visual losses. Experimentally, some degree of regeneration can be induced by intraocular inflammation or growth factors expressed by inflammatory cells (610), altering the cell-intrinsic growth potential of RGCs (35), enhancing physiological activity (11, 12), chelating free zinc (13, 14), and other manipulations (1519). However, the extent of regeneration achieved to date remains modest, underlining the need for more effective therapies.Ciliary neurotrophic factor (CNTF) is a leading therapeutic candidate for glaucoma and other ocular diseases (2023). Activation of the downstream signal transduction cascade requires CNTF to bind to CNTF receptor-α (CNTFRα) (24), which leads to recruitment of glycoprotein 130 (gp130) and leukemia inhibitory factor receptor-β (LIFRβ) to form a tripartite receptor complex (25). CNTFRα anchors to the plasma membrane through a glycosylphosphatidylinositol linkage (26) and can be released and become soluble through phospholipase C-mediated cleavage (27). CNTF has been reported to activate STAT3 phosphorylation in retinal neurons, including RGCs, and to promote survival, but it is unknown whether these effects are mediated by direct action of CNTF on RGCs via CNTFRα (28). Our previous studies showed that CNTF promotes axon outgrowth from neonate RGCs in culture (29) but fails to do so in cultured mature RGCs (8) or in vivo (6). Although some studies report that recombinant CNTF (rCNTF) can promote optic nerve regeneration (20, 30, 31), others find little or no effect unless SOCS3 (suppressor of cytokine signaling-3), an inhibitor of the Jak-STAT pathway, is deleted in RGCs (5, 6, 32). In contrast, multiple studies show that adeno-associated virus (AAV)-mediated expression of CNTF in RGCs induces strong regeneration (3340). The basis for the discrepant effects of rCNTF and CNTF gene therapy is unknown but is of considerable interest in view of the many promising clinical and preclinical outcomes obtained with CNTF to date.Because intravitreal virus injections induce inflammation (41), we investigated the possibility that CNTF, a known immune modulator (4244), might act by elevating expression of other immune-derived factors. We report here that the beneficial effects of CNTF gene therapy in fact require immune system activation and elevation of C-C motif chemokine ligand 5 (CCL5). Depletion of neutrophils, global knockout (KO) or RGC-selective deletion of the CCL5 receptor CCR5, or a CCR5 antagonist all suppress the effects of CNTF gene therapy, whereas recombinant CCL5 (rCCL5) promotes axon regeneration and increases RGC survival. These studies point to CCL5 as a potent monotherapy for optic nerve regeneration and to the possibility that other applications of CNTF and other forms of gene therapy might similarly act indirectly through other factors.  相似文献   

10.
Living systems maintain or increase local order by working against the second law of thermodynamics. Thermodynamic consistency is restored as they consume free energy, thereby increasing the net entropy of their environment. Recently introduced estimators for the entropy production rate have provided major insights into the efficiency of important cellular processes. In experiments, however, many degrees of freedom typically remain hidden to the observer, and, in these cases, existing methods are not optimal. Here, by reformulating the problem within an optimization framework, we are able to infer improved bounds on the rate of entropy production from partial measurements of biological systems. Our approach yields provably optimal estimates given certain measurable transition statistics. In contrast to prevailing methods, the improved estimator reveals nonzero entropy production rates even when nonequilibrium processes appear time symmetric and therefore may pretend to obey detailed balance. We demonstrate the broad applicability of this framework by providing improved bounds on the energy consumption rates in a diverse range of biological systems including bacterial flagella motors, growing microtubules, and calcium oscillations within human embryonic kidney cells.

Thermodynamic laws place fundamental limits on the efficiency and fitness of living systems (1, 2). To maintain cellular order and perform essential biological functions such as sensing (36), signaling (7), replication (8, 9) or locomotion (10), organisms consume energy and dissipate heat. In doing so, they increase the entropy of their environment (2), in agreement with the second law of thermodynamics (11). Obtaining reliable estimates for the energy consumption and entropy production in living matter holds the key to understanding the physical boundaries (1214) that constrain the range of theoretically and practically possible biological processes (3). Recent experimental (6, 15, 16) and theoretical (1720) advances in the imaging and modeling of cellular and subcellular dynamics have provided groundbreaking insights into the thermodynamic efficiency of molecular motors (14, 21), biochemical signaling (16, 22, 23) and reaction (24) networks, and replication (9) and adaption (25) phenomena. Despite such major progress, however, it is also known that the currently available entropy production estimators (26, 27) can fail under experimentally relevant conditions, especially when only a small set of observables is experimentally accessible or nonequilibrium transport currents (2830) vanish.To help overcome these limitations, we introduce here a generic optimization framework that can produce significantly improved bounds on the entropy production in living systems. We will prove that these bounds are optimal given certain measurable statistics. From a practical perspective, our method requires observations of only a few coarse-grained state variables of an otherwise hidden Markovian network. We demonstrate the practical usefulness by determining improved entropy production bounds for bacterial flagella motors (10, 31), growing microtubules (32, 33), and calcium oscillations (7, 34) in human embryonic kidney cells.Generally, entropy production rates can be estimated from the time series of stochastic observables (35). Thermal equilibrium systems obey the principle of detailed balance, which means that every forward trajectory is as likely to be observed as its time reversed counterpart, neutralizing the arrow of time (36). By contrast, living organisms operate far from equilibrium, which means that the balance between forward and reversed trajectories is broken and net fluxes may arise (1, 3739). When all microscopic details of a nonequilibrium system are known, one can measure the rate of entropy production by comparing the likelihoods of forward and reversed trajectories in sufficiently large data samples (35, 36). However, in most if not all biophysical experiments, many degrees of freedom remain hidden to the observer, demanding methods (28, 40, 41) that do not require complete knowledge of the system. A powerful alternative is provided by thermodynamic uncertainty relations (TURs), which use the mean and variance of steady-state currents to bound entropy production rates (18, 19, 26, 4248). Although highly useful when currents can be measured (4447), or when the system can be externally manipulated (40, 49), these methods give, by construction, trivial zero bounds for current-free nonequilibrium systems, such as driven one-dimensional (1D) nonperiodic oscillators. In the absence of currents, potential asymmetries in the forward and reverse trajectories can still be exploited to bound the entropy production rate (29, 30, 50), but to our knowledge no existing method is capable of producing nonzero bounds when forward and reverse trajectories are statistically identical. Moreover, even though previous bounds can become tight in some cases (51), optimal entropy production estimators for nonequilibrium systems are in general unknown.To obtain bounds that are provably optimal under reasonable conditions on the available data, we reformulate the problem here within an optimization framework. Formally, we consider any steady-state Markovian dynamics for which only coarse-grained variables are observable, where these observables may appear non-Markovian. We then search over all possible underlying Markovian systems to identify the one which minimizes the entropy production rate while obeying the observed statistics. More specifically, our algorithmic implementation leverages information about successive transitions, allowing us to discover nonzero bounds on entropy production even when the coarse-grained statistics appear time symmetric. We demonstrate this for both synthetic test data and experimental data (52) for flagella motors. Subsequently, we consider the entropy production of microtubules (33), which slowly grow before rapidly shrinking in steady state, to show how refined coarse graining in space and time leads to improved bounds. The final application to calcium oscillations in human embryonic kidney cells (34) illustrates how external stimulation with drugs can increase entropy production.  相似文献   

11.
Core concepts in singular optics, especially the polarization singularities, have rapidly penetrated the surging fields of topological and non-Hermitian photonics. For open photonic structures with non-Hermitian degeneracies in particular, polarization singularities would inevitably encounter another sweeping concept of Berry phase. Several investigations have discussed, in an inexplicit way, connections between both concepts, hinting at that nonzero topological charges for far-field polarizations on a loop are inextricably linked to its nontrivial Berry phase when degeneracies are enclosed. In this work, we reexamine the seminal photonic crystal slab that supports the fundamental two-level non-Hermitian degeneracies. Regardless of the invariance of nontrivial Berry phase (concerning near-field Bloch modes defined on the momentum torus) for different loops enclosing both degeneracies, we demonstrate that the associated far polarization fields (defined on the momentum sphere) exhibit topologically inequivalent patterns that are characterized by variant topological charges, including even the trivial scenario of zero charge. Moreover, the charge carried by the Fermi arc actually is not well defined, which could be different on opposite bands. It is further revealed that for both bands, the seemingly complex evolutions of polarizations are bounded by the global charge conservation, with extra points of circular polarizations playing indispensable roles. This indicates that although not directly associated with any local charges, the invariant Berry phase is directly linked to the globally conserved charge, physical principles underlying which have all been further clarified by a two-level Hamiltonian with an extra chirality term. Our work can potentially trigger extra explorations beyond photonics connecting Berry phase and singularities.

Pioneered by Pancharatnam, Berry, Nye, and others (110), Berry phase and singularities have become embedded languages all across different branches of photonics. Optical Berry phase is largely manifested through either polarization evolving Pancharatnam–Berry phase or the spin-redirection Bortolotti–Rytov–Vladimirskii–Berry phase (2, 4, 5, 1115); while optical singularities are widely observed as singularities of intensity (caustics) (6), phase (vortices) (7), or polarization (810). As singularities for complex vectorial waves, polarization singularities are skeletons of electromagnetic waves and are vitally important for understanding various interference effects underlying many applications (1620).There is a superficial similarity between the aforementioned two concepts: Both the topological charge of polarization field [Hopf index of line field (21, 22)] and Berry phase are defined on a closed circuit. Despite this, it is quite unfortunate that almost no definite connections have been established between them in optics. This is fully understandable: Berry phase is defined on the Pancharatnam connection (parallel transport) that decides the phase contrast between neighboring states on the loop (3, 4); while the polarization charge reflects accumulated orientation rotations of polarization ellipses, which has no direct relevance to the overall phase of each state. This explains why in pioneering works where both concepts were present (2327), their interplay was rarely elaborated on.Spurred by studies into bound states in the continuum, polarization singularities have gained enormous renewed interest in open periodic photonic structures, manifested in different morphologies with both fundamental and higher-order half-integer charges (2850). Simultaneously, the significance of Berry phase has been further reinforced in surging fields of topological and non-Hermitian photonics (1, 23, 26, 5156). In open periodic structures involving band degeneracies, Berry phase and polarization singularity would inevitably meet, which sparks the influential work on non-Hermitian degeneracy (36) and several other following studies (40, 43, 45) discussing both concepts simultaneously. Although not claimed explicitly, those works hint that nontrivial Berry phase produces nonzero polarization charges.Aiming to bridge Berry phase and polarization singularity, we reexamine the seminal photonic crystal slab (PCS) that supports elementary two-level non-Hermitian degeneracies. It is revealed that with an invariant nontrivial π Berry phase, the corresponding polarization fields on different isofrequency contours enclosing both non-Hermitian degenerate points (or equivalently exceptional points [EPs]) (26) exhibit diverse patterns characterized by different polarization charges, even including the trivial zero charge. It is further revealed that the charge carried by the Fermi arc is actually not well defined, which could be different on opposite bands. We also discover that such complexity of field evolutions is constrained by global charge conservation for both bands, with extra points of circular polarizations (C points) playing pivotal roles. This reveals the explicit connection between globally conserved charge and the invariant Berry phase, underlying which the physical mechanisms have been further clarified by a two-level Hamiltonian with an extra chirality term (25). We show that such an unexpected connection is generically manifest in various structures, despite the fact that Berry phase and polarization charge actually characterize different entities of near-field Bloch modes and their projected far polarization fields, respectively: Bloch modes are defined on the momentum torus and can be folded into the irreducible Brillouin zone; while polarization fields are defined on the momentum sphere, due to the involvement of out-of-plane wave vectors along which there is no periodicity. Our study can spur further investigations in other subjects beyond photonics to explore conceptual interconnectedness, where both the concepts of Berry phase and singularities are present.  相似文献   

12.
Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.

Hepatitis C virus (HCV) is a global disease burden, with an estimated 71 million people infected worldwide (1, 2). Roughly 75% of HCV infections become chronic (35) and in severe cases can result in cirrhosis or hepatocellular carcinoma (6). Viral infection can be cured at high rates by direct-acting antivirals, but multiple public health and financial barriers (7, 8), along with the possibility of reinfection or continued disease progression (7, 9, 10), have resulted in a continued rise in HCV infections. An HCV vaccine remains essential to proactively protect against viral spread, yet vaccine developments against the virus have been unsuccessful to date (11, 12). The challenges posed by HCV sequence diversity (12, 13), glycan shielding (14, 15), immunodominant nonneutralizing epitopes (1619), and preparation of a homogeneous E1E2 antigen all contribute to the difficulty in generating protective B cell immune responses. Although multiple studies in chimpanzees and humans have used E1E2 formulations to induce a humoral immune response, their success in generating high titers of broadly neutralizing antibody (bnAb) responses has been limited (20). Optimization of E1E2 to improve its immunogenicity and elicitation of bnAbs through rational design may lead to an effective B cell-based vaccine (21).HCV envelope glycoproteins E1 and E2 form a heterodimer on the surface of the virion (2224). Furthermore, E1E2 assembly has been proposed to form a trimer of heterodimers (25) mediated by hydrophobic C-terminal transmembrane domains (TMDs) (24, 26, 27) and interactions between E1 and E2 ectodomains (2830). These glycoproteins are necessary for viral entry and infection, as E2 attaches to the CD81 and SR-B1 coreceptors as part of a multistep entry process on the surface of hepatocytes (3134). Neutralizing antibody responses to HCV infection target epitopes in E1, E2, or the E1E2 heterodimer (18, 3540). Structural knowledge of bnAb antibody–antigen interactions, which often target E2 epitopes in distinct antigenic domains B, D, or E (18, 41, 42), can inform vaccine design efforts to induce bnAb responses against flexible HCV epitopes (4345). E1E2 bnAbs, including AR4A, AR5A (46), and others recently identified (38), are not only among the most broadly neutralizing (35) but also represent E1E2 quaternary epitopes unique to antibody recognition of HCV.Although much is known about bnAb responses to E1E2 glycoproteins, induction of B cell-based immunity with an E1E2-based vaccine immunogen (4749) has remained difficult. The inherent hydrophobicity of E1 and E2 TMDs (24, 50) may impede uniform production of an immunogenic E1E2 heterodimer that could be utilized for both vaccine development and E1E2 structural studies. Although partial E1 and E2 structures have been determined (39, 5154), many other enveloped viruses have structures of a complete and near-native glycoprotein assembly (5559), providing a basis for rational vaccine design (6062). Viral glycoproteins of influenza hemagglutinin (63), respiratory syncytial virus (RSV) (55), severe acute respiratory syndrome coronavirus 2 (64), and others (65, 66) have been stabilized in soluble form using a C-terminal attached foldon trimerization domain to facilitate assembly. HIV gp120–gp41 proteins have been designed as soluble SOSIP trimers in part by introducing a furin cleavage site to facilitate native-like assembly when cleaved by the enzyme (56, 67). Previously described E1E2 glycoprotein designs include covalently linked E1 and E2 ectodomains (68, 69), E1E2 with TMDs intact and an immunoglobulin G (IgG) Fc tag for purification (70), as well as E1 and E2 ectodomains with a cleavage site (68), which presented challenges for purification either due to intracellular expression or to high heterogeneity. Two recently described scaffolded E1E2 designs, while promising, have not been shown to engage monoclonal antibodies (mAbs) that recognize the native E1E2 assembly, though they were engaged by E1-specific and E2-specific mAbs, as well as coreceptors that recognize E2 (71). Therefore, these presentations of E1E2 glycoproteins may not represent a native and immunogenic heterodimeric assembly, and thus their potential as vaccine candidates remains unclear.Here, we describe the design of a secreted E1E2 glycoprotein (sE1E2) that mimics both the antigenicity in vitro and the immunogenicity in vivo of the native heterodimer through the scaffolding of E1E2 ectodomains. In testing our designs, we found that both replacing E1E2 TMDs with a leucine zipper scaffold and inserting a furin cleavage site between E1 and E2 enabled secretion and native-like sE1E2 assembly. We assessed the size, heterogeneity, antigenicity, and immunogenicity of this construct (identified as sE1E2.LZ) in comparison with full-length membrane-bound E1E2 (mbE1E2). sE1E2.LZ binds a broad panel of bnAbs to E2 and E1E2, as well as coreceptor CD81, providing evidence of assembly into a native-like heterodimer. An immunogenicity study indicated that sera of mice injected with sE1E2.LZ neutralize HCV pseudoparticles at levels comparable to sera from mice immunized with mbE1E2. This sE1E2 design is a form of the native E1E2 heterodimer that both improves upon current designs and represents a platform for structural characterization and engineering of additional HCV vaccine candidates.  相似文献   

13.
Learning and memory are assumed to be supported by mechanisms that involve cholinergic transmission and hippocampal theta. Using G protein–coupled receptor-activation–based acetylcholine sensor (GRABACh3.0) with a fiber-photometric fluorescence readout in mice, we found that cholinergic signaling in the hippocampus increased in parallel with theta/gamma power during walking and REM sleep, while ACh3.0 signal reached a minimum during hippocampal sharp-wave ripples (SPW-R). Unexpectedly, memory performance was impaired in a hippocampus-dependent spontaneous alternation task by selective optogenetic stimulation of medial septal cholinergic neurons when the stimulation was applied in the delay area but not in the central (choice) arm of the maze. Parallel with the decreased performance, optogenetic stimulation decreased the incidence of SPW-Rs. These findings suggest that septo–hippocampal interactions play a task-phase–dependent dual role in the maintenance of memory performance, including not only theta mechanisms but also SPW-Rs.

The neurotransmitter acetylcholine is thought to be critical for hippocampus-dependent declarative memories (1, 2). Reduction in cholinergic neurotransmission, either in Alzheimer’s disease or in experiments with cholinergic antagonists, such as scopolamine, impairs memory function (38). Acetylcholine may bring about its beneficial effects on memory encoding by enhancing theta rhythm oscillations, decreasing recurrent excitation, and increasing synaptic plasticity (911). Conversely, drugs which activate cholinergic receptors enhance learning and, therefore, are a neuropharmacological target for the treatment of memory deficits in Alzheimer’s disease (5, 12, 13).The contribution of cholinergic mechanisms in the acquisition of long-term memories and the role of the hippocampal–entorhinal–cortical interactions are well supported by experimental data (5, 12, 13). In addition, working memory or “short-term” memory is also supported by the hippocampal–entorhinal–prefrontal cortex (1416). Working memory in humans is postulated to be a conscious process to “keep things in mind” transiently (16). In rodents, matching to sample task, spontaneous alternation between reward locations, and the radial maze task have been suggested to function as a homolog of working memory [“working memory like” (17)].Cholinergic activity is a critical requirement for working memory (18, 19) and for sustaining theta oscillations (10, 2022). In support of this contention, theta–gamma coupling and gamma power are significantly higher in the choice arm of the maze, compared with those in the side arms where working memory is no longer needed for correct performance (2326). It has long been hypothesized that working memory is maintained by persistent firing of neurons, which keep the presented items in a transient store in the prefrontal cortex and hippocampal–entorhinal system (2731), although the exact mechanisms are debated (3237). An alternative hypothesis holds that items of working memory are stored in theta-nested gamma cycles (38). Common in these models of working memory is the need for an active, cholinergic system–dependent mechanism (3941). However, in spontaneous alternation tasks, the animals are not moving continuously during the delay, and theta oscillations are not sustained either. During the immobility epochs, theta is replaced by intermittent sharp-wave ripples (SPW-R), yet memory performance does not deteriorate. On the contrary, artificial blockade of SPW-Rs can impair memory performance (42, 43), and prolongation of SPW-Rs improves performance (44). Under the cholinergic hypothesis of working memory, such a result is unexpected.To address the relationship between cholinergic/theta versus SPW-R mechanism in spontaneous alternation, we used a G protein–coupled receptor-activation–based acetylcholine sensor (GRABACh3.0) (45) to monitor acetylcholine (ACh) activity during memory performance in mice. In addition, we optogenetically enhanced cholinergic tone, which suppresses SPW-Rs by a different mechanism than electrically or optogenetically induced silencing of neurons in the hippocampus (43, 44). We show that cholinergic signaling in the hippocampus increases in parallel with theta power/score during walking and rapid eye movement (REM) sleep and reaches a transient minimum during SPW-Rs. Selective optogenetic stimulation of medial septal cholinergic neurons decreased the incidence of SPW-Rs during non-REM sleep (4648), as well as during the delay epoch of a working memory task and impaired memory performance. These findings demonstrate that memory performance is supported by complementary theta and SPW-R mechanisms.  相似文献   

14.
Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others’ lifespans outlast their “mindspans.”

Aging is the biggest risk factor for Alzheimer’s disease, but many aged individuals nevertheless retain the ability to perform cognitive tasks with young adult (YA)-like competency, and are thus resilient to age-related cognitive decline and dementias (1, 2). The mechanisms of such resilience are unknown, but are thought to involve neural or cognitive reserve, brain network adaptations, or simply the ability to maintain cognitive brain circuits in a YA-like state (35). Much of the cellular and functional insight into the concept or risk of/resilience against age-related cognitive impairments has come from animal models of normal/nonpathological aging (610). Many of these studies have shown that circuit function abnormalities are associated with behavioral impairments. The cellular and structural bases for such functional aberrations, however, remain largely unknown.Two of the most well-studied cognitive domains that show susceptibility to chronological aging in both rodents and nonhuman primates are working memory and spatial/temporal memory (610). Importantly, these cognitive domains engage anatomically distinct neurocognitive systems, with the former relying on prefrontal/orbitofrontal cortical circuits and the latter relying on hippocampal circuitry. Interestingly, although behavioral deficits in these two domains (in the case of rat models of cognitive aging) begin to emerge, worsen, and become increasingly prevalent between 12 and 18 mo of age in most strains (reviewed in refs. 9 and 11), cognitive aging within hippocampus-dependent forms of learning and memory are relatively independent of those that engage the prefrontal/orbitofrontal cortical neural systems (69, 1215).Neither the mechanisms underlying the conservation of memory function across chronological aging nor those contributing to the age-related emergence and exacerbation of memory impairments are clearly understood for either neurocognitive system. It is clear, however, that neither frank neuronal loss (16, 17) nor overall synapse loss (18) contributes to cognitive aging within the medial temporal lobe/hippocampal memory system. Rather, the intriguing idea that has emerged from work in both the hippocampal and the prefrontal/orbitofrontal cortical memory systems is that there are functional alterations in the synaptic connections in individual microcircuits embedded within these larger neuroanatomical systems (610, 1931).Axospinous synapses (including those in hippocampal and cortical circuits) are characterized on the basis of the three-dimensional morphology of their postsynaptic densities (PSDs) (20, 3234). The most-abundant axospinous synaptic subtype has a continuous, macular, disk-shaped PSD, as compared to the less-abundant perforated synaptic subtype, which has at least one discontinuity in its PSD (34). In addition to differing substantially with regard to relative frequency, perforated and nonperforated synapses also harbor major differences in size and synaptic AMPA-type and NMDA-type receptor expression levels (AMPAR and NMDAR, respectively) (3438). There is also evidence that perforated and nonperforated synapses are differentially involved in synaptic plasticity (3944) and in preservation of—or reductions in—memory function during chronological aging (6, 20, 45). Layered onto these general distinctions between perforated and nonperforated synapses are more specific differences in their characteristics when considered within neural circuits. For example, perforated synapses have a stronger and more consistent influence on neuronal computation within hippocampal region CA1 than their nonperforated counterparts, which nevertheless outnumber the former by a roughly 9-to-1 ratio (34, 46, 47).These and other circuit-specific differences necessitate a circuit-based approach to understanding the synaptic bases underlying the retention or loss of YA-like memory function in the aging brain. In many ways, the hippocampal system is particularly convenient for such circuit-based approaches (48, 49). Information about the internal and external world is funneled to the parahippocampal system and then relayed via the entorhinal cortex to the dentate gyrus, the first component of the so-called trisynaptic circuit in the hippocampus proper. Granule cells in the dentate gyrus then transmit their computations to hippocampal region CA3 via the mossy fibers, which form very large and anatomically distinct synapses called mossy fiber bouton–thorny excrescence synaptic complexes in the stratum lucidum (SL). CA3 pyramidal neurons then integrate information from their autoassociational connections in the stratum radiatum (SR) and stratum oriens (SO), with both direct entorhinal inputs in stratum lacunosum-moleculare (SLM) and the dentate gyrus inputs in the SL, and convey this information to hippocampal CA1 pyramidal neurons. Neurons in hippocampal CA1 then integrate this information in their basal and apical SR dendrites with direct entorhinal cortical inputs in their most distal, tufted dendrites in the SLM, and represent the first and largest extrahippocampal output from the hippocampus proper. Thus, the computations performed both within individual hippocampal subregions and between them as an interconnected neurocognitive system are complex, and involve a combination of intrinsic (i.e., membrane-bound ion channels that regulate membrane excitability) and synaptic (i.e., ligand-gated ion channels expressed at both excitatory and inhibitory synapses) influences. Additionally, age-related changes at any level of these complex circuits will have downstream consequences on the accuracy/reliability of the information being relayed to extrahippocampal regions via CA1 pyramidal neurons.Given the amount of evidence supporting a possible synaptic explanation for age-related learning and memory impairments in hippocampus-dependent forms of cognition (610), we combined patch-clamp physiology, serial section conventional and immunogold electron microscopy (EM), quantitative Western blot analyses, and behavioral characterization using two hippocampus-dependent forms of learning in YA (6- to 8-mo old) and aged rats (28- to 29-mo old) to examine two interconnected hippocampal regions implicated in cognitive aging: Regions CA1 and CA3. We focused on CA1 and CA3 because of their central location in the hippocampal circuit (4850), their similar laminar dendritic structure (4850), and their well-documented age-related changes in place field specificity and reliability (5156).We find that the synaptic architecture and balance of synaptic weights in YA and aged, learning-unimpaired (AU) rats is remarkably similar, but that both are different in aged, learning-impaired (AI) rats. Moreover, this restructuring among “unsuccessful” cognitive agers has an intriguing specificity: It involves only AMPARs, only perforated axospinous synapses, and only hippocampal region CA3, which together shift the balance of synaptic weights that drive action potential output in CA3 pyramidal neurons maladaptively toward an overemphasis of the autoassociational synapses that interconnect CA3 pyramidal neurons.  相似文献   

15.
Most rhinoviruses, which are the leading cause of the common cold, utilize intercellular adhesion molecule-1 (ICAM-1) as a receptor to infect cells. To release their genomes, rhinoviruses convert to activated particles that contain pores in the capsid, lack minor capsid protein VP4, and have an altered genome organization. The binding of rhinoviruses to ICAM-1 promotes virus activation; however, the molecular details of the process remain unknown. Here, we present the structures of virion of rhinovirus 14 and its complex with ICAM-1 determined to resolutions of 2.6 and 2.4 Å, respectively. The cryo-electron microscopy reconstruction of rhinovirus 14 virions contains the resolved density of octanucleotide segments from the RNA genome that interact with VP2 subunits. We show that the binding of ICAM-1 to rhinovirus 14 is required to prime the virus for activation and genome release at acidic pH. Formation of the rhinovirus 14–ICAM-1 complex induces conformational changes to the rhinovirus 14 capsid, including translocation of the C termini of VP4 subunits, which become poised for release through pores that open in the capsids of activated particles. VP4 subunits with altered conformation block the RNA–VP2 interactions and expose patches of positively charged residues. The conformational changes to the capsid induce the redistribution of the virus genome by altering the capsid–RNA interactions. The restructuring of the rhinovirus 14 capsid and genome prepares the virions for conversion to activated particles. The high-resolution structure of rhinovirus 14 in complex with ICAM-1 explains how the binding of uncoating receptors enables enterovirus genome release.

Human rhinoviruses are the cause of more than half of common colds (1). Medical visits and missed days of school and work cost tens of billions of US dollars annually (2, 3). There is currently no cure for rhinovirus infections, and the available treatments are only symptomatic. Rhinoviruses belong to the family Picornaviridae, genus Enterovirus, and are classified into species A, B, and C (4). Rhinoviruses A and B can belong to either “major” or “minor” groups, based on their utilization of intercellular adhesion molecule-1 (ICAM-1) or low-density lipoprotein receptor for cell entry (57). Type C rhinoviruses use CDHR3 as a receptor (8). Rhinovirus 14 belongs to the species rhinovirus B and uses ICAM-1 as a receptor. Receptors recognized by rhinoviruses and other enteroviruses can be divided into two groups based on their function in the infection process (9). Attachment receptors such as DAF, PSGL1, KREMEN1, CDHR3, and sialic acid enable the binding and endocytosis of virus particles into cells (1013). In contrast, uncoating receptors including ICAM-1, CD155, CAR, and SCARB2 enable virus cell entry but also promote genome release from virus particles (5, 1416).Virions of rhinoviruses are nonenveloped and have icosahedral capsids (17). Genomes of rhinoviruses are 7,000 to 9,000 nucleotide-long single-stranded positive-sense RNA molecules (1, 17). The rhinovirus genome encodes a single polyprotein that is co- and posttranslationally cleaved into functional protein subunits. Capsid proteins VP1, VP3, and VP0, originating from one polyprotein, form a protomer, 60 of which assemble into a pseudo-T = 3 icosahedral capsid. To render the virions mature and infectious, VP0 subunits are cleaved into VP2 and VP4 (18, 19). VP1 subunits form pentamers around fivefold symmetry axes, whereas subunits VP2 and VP3 form heterohexamers centered on threefold symmetry axes. The major capsid proteins VP1 through 3 have a jelly roll β-sandwich fold formed by two β-sheets, each containing four antiparallel β-strands, which are conventionally named B to I (2022). The two β-sheets contain the strands BIDG and CHEF, respectively. The C termini of the capsid proteins are located at the virion surface, whereas the N termini mediate interactions between the capsid proteins and the RNA genome on the inner surface of the capsid. VP4 subunits are attached to the inner face of the capsid formed by the major capsid proteins. The surfaces of rhinovirus virions are characterized by circular depressions called canyons, which are centered around fivefold symmetry axes of the capsids (21).The VP1 subunits of most rhinoviruses, but not those of rhinovirus 14, contain hydrophobic pockets, which are filled by molecules called pocket factors (17, 21, 23, 24). It has been speculated that pocket factors are fatty acids or lipids (25). The pockets are positioned immediately below the canyons. The exposure of rhinoviruses to acidic pH induces expulsion of the pocket factors, which leads to the formation of activated particles and genome release (17, 2632). The activated particles are characterized by capsid expansion, a reduction in interpentamer contacts, the release of VP4 subunits, externalization of N termini of VP1 subunits, and changes in the distribution of RNA genomes (17, 2629, 33, 34). Artificial hydrophobic compounds that bind to VP1 pockets with high affinity inhibit infection by rhinoviruses (35, 36).ICAM-1 is an endothelial- and leukocyte-associated protein that stabilizes cell–cell interactions and facilitates the movement of leukocytes through endothelia (37). ICAM-1 can be divided into an extracellular amino-terminal part composed of five immunoglobulin domains, a single transmembrane helix, and a 29-residue–long carboxyl-terminal cytoplasmic domain. The immunoglobulin domains are characterized by a specific fold that consists of seven to eight β-strands, which form two antiparallel β-sheets in a sandwich arrangement (3840). The immunoglobulin domains of ICAM-1 are stabilized by disulfide bonds and glycosylation (3841). The connections between the immunoglobulin domains are formed by flexible linkers that enable bending of the extracellular part of ICAM-1. For example, the angle between domains 1 and 2 differs by 8° between molecules in distinct crystal forms (38, 42). As a virus receptor, ICAM-1 enables the virus particles to sequester at the cell surface and mediates their endocytosis (5). The structures of complexes of rhinoviruses 3, 14, and 16, and CVA21 with ICAM-1 have been determined to resolutions of 9 to 28 Å (4246). It was shown that ICAM-1 molecules bind into the canyons at the rhinovirus surface, approximately between fivefold and twofold symmetry axes (4246). ICAM-1 interacts with residues from all three major capsid proteins. It has been speculated that the binding of ICAM-1 triggers the transition of virions of rhinovirus 14 to activated particles and initiates genome release (45, 47). However, the limited resolution of the previous studies prevented characterization of the corresponding molecular mechanism.Here, we present the cryo-electron microscopy (cryo-EM) reconstruction of the rhinovirus 14 virion, which contains resolved density of octanucleotide segments of the RNA genome that interact with VP2 subunits. Furthermore, we show that the binding of ICAM-1 to rhinovirus 14 induces changes in its capsid and genome, which are required for subsequent virus activation and genome release at acidic pH.  相似文献   

16.
Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.

Osteoarthritis (OA) is the leading cause of pain and disability worldwide and is associated with increased all-cause mortality and cardiovascular disease (1, 2). OA is strongly associated with obesity, suggesting that either increased biomechanical joint loading or systemic inflammation and metabolic dysfunction related to obesity are responsible for joint degeneration (1, 2). However, increasing evidence is mounting that changes in biomechanical loading due to increased body mass do not account for the severity of obesity-induced knee OA (19). These observations suggest that other factors related to the presence of adipose tissue and adipose tissue-derived cytokines—termed adipokines—play critical roles in this process and other musculoskeletal conditions (1, 2, 6, 7, 10). As there are presently no disease-modifying OA drugs available, direct evidence linking adipose tissue and cartilage health could provide important mechanistic insight into the natural history of OA and obesity and therefore guide the development and translation of novel OA therapeutic strategies designed to preserve joint health.The exact contribution of the adipokine-signaling network in OA has been difficult to determine due to the complex interactions among metabolic, biomechanical, and inflammatory factors related to obesity (11). To date, the link between increased adipose tissue mass and OA pathogenesis has largely been correlative (6, 7, 12), and, as such, the direct effect of adipose tissue and the adipokines it releases has been difficult to separate from other factors such as dietary composition or excess body mass in the context of obesity, which is most commonly caused by excessive nutrition (2, 6, 7). In particular, leptin, a proinflammatory adipokine and satiety hormone secreted proportionally to adipose tissue mass is most consistently increased in obesity-induced OA (1), and leptin knockout mice are protected from OA (6, 7). However, it remains to be determined whether leptin directly contributes to OA pathogenesis, independent of its effect on metabolism (and weight). Additional adipokines that have been implicated in the onset and progression of OA include adiponectin, resistin, visfatin, chimerin, and inflammatory cytokines such as interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α) (13). The infrapatellar fat pad represents a local source of adipokines within the knee joint, but several studies indicate strong correlations with visceral adipose tissue, outside of the joint organ system, with OA severity (14). Furthermore, adipokine receptors are found on almost all cells within the joint and, therefore, could directly contribute to OA pathogenesis through synovitis, cartilage damage, and bone remodeling (13). The role of other adipokines (15) in OA pathogenesis remains to be determined, as it has been difficult to separate and directly test the role of adipokines from other biomechanical, inflammatory, and metabolic factors that contribute to OA pathogenesis.To directly investigate the mechanisms by which adipose tissue affects OA, we used a transgenic mouse with lipodystrophy (LD) that completely lacks adipose tissue and, therefore, adipokine signaling. The LD model system affords the unique opportunity to directly examine the effects of adipose tissue and its secretory factors on musculoskeletal pathology without the confounding effect of diet (16, 17). While LD mice completely lack adipose tissue depots, they demonstrate similar body mass to wild-type (WT) controls on a chow diet (12, 1619). These characteristics provide a unique model that can be used to eliminate the factor of loading due to body mass on joint damage and, thus, to directly test the effects of fat and factors secreted by fat on musculoskeletal tissues. Of particular interest, LD mice also exhibit several characteristics that have been associated with OA, including sclerotic bone (11, 20), metabolic derangement (3, 5, 79, 21, 22), and muscle weakness (2). Despite these OA-predisposing features, LD mice are protected from OA and implantation of adipose tissue back into LD mice restores susceptibility to OA—demonstrating a direct relationship between adipose tissue and cartilage health, independent of the effect of obesity on mechanical joint loading.  相似文献   

17.
Robust estimates for the rates and trends in terrestrial gross primary production (GPP; plant CO2 uptake) are needed. Carbonyl sulfide (COS) is the major long-lived sulfur-bearing gas in the atmosphere and a promising proxy for GPP. Large uncertainties in estimating the relative magnitude of the COS sources and sinks limit this approach. Sulfur isotope measurements (34S/32S; δ34S) have been suggested as a useful tool to constrain COS sources. Yet such measurements are currently scarce for the atmosphere and absent for the marine source and the plant sink, which are two main fluxes. Here we present sulfur isotopes measurements of marine and atmospheric COS, and of plant-uptake fractionation experiments. These measurements resulted in a complete data-based tropospheric COS isotopic mass balance, which allows improved partition of the sources. We found an isotopic (δ34S ± SE) value of 13.9 ± 0.1‰ for the troposphere, with an isotopic seasonal cycle driven by plant uptake. This seasonality agrees with a fractionation of −1.9 ± 0.3‰ which we measured in plant-chamber experiments. Air samples with strong anthropogenic influence indicated an anthropogenic COS isotopic value of 8 ± 1‰. Samples of seawater-equilibrated-air indicate that the marine COS source has an isotopic value of 14.7 ± 1‰. Using our data-based mass balance, we constrained the relative contribution of the two main tropospheric COS sources resulting in 40 ± 17% for the anthropogenic source and 60 ± 20% for the oceanic source. This constraint is important for a better understanding of the global COS budget and its improved use for GPP determination.

The Earth system is going through rapid changes as the climate warms and CO2 level rises. This rise in CO2 is mitigated by plant uptake; hence, it is important to estimate global and regional photosynthesis rates and trends (1). Yet, robust tools for investigating these processes at a large scale are scarce (2). Recent studies suggest that carbonyl sulfide (COS) could provide an improved constraint on terrestrial photosynthesis (gross primary production, GPP) (212). COS is the major long-lived sulfur-bearing gas in the atmosphere and the main supplier of sulfur to the stratospheric sulfate aerosol layer (13), which exerts a cooling effect on the Earth’s surface and regulates stratospheric ozone chemistry (14).During terrestrial photosynthesis, COS diffuses into leaf stomata and is consumed by photosynthetic enzymes in a similar manner to CO2 (35). Contrary to CO2, COS undergoes rapid and irreversible hydrolysis mainly by the enzyme carbonic-anhydrase (6, 7). Thus, COS can be used as a proxy for the one-way flux of CO2 removal from the atmosphere by terrestrial photosynthesis (2, 811). However, the large uncertainties in estimating the COS sources weaken this approach (1012, 15). Tropospheric COS has two main sources: the oceans and anthropogenic emissions, and one main sink–terrestrial plant uptake (8, 1013). Smaller sources include biomass burning, soil emissions, wetlands, volcanoes, and smaller sinks include OH destruction, stratospheric destruction, and soil uptake (12). The largest source of COS to the atmosphere is the ocean, both as direct COS emission, and as indirect carbon disulfide (CS2) and dimethylsulfide (DMS) emissions that are rapidly oxidized to COS (10, 1620). Recent studies suggest oceanic COS emissions are in the range of 200–4,000 GgS/y (1922). The second major COS source is the anthropogenic source, which is dominated by indirect emissions derived from CS2 oxidation, mainly from the use of CS2 as an industrial solvent. Direct emissions of COS are mainly derived from coal and fuel combustion (17, 23, 24). Recent studies suggest that anthropogenic emissions are in the range of 150–585 GgS/y (23, 24). The terrestrial plant uptake is estimated to be in the range of 400–1,360 GgS/y (11). Measurements of sulfur isotope ratios (δ34S) in COS may be used to track COS sources and thus reduce the uncertainties in their flux estimations (15, 2527). However, the isotopic mass balance approach works best if the COS end members are directly measured and have a significantly different isotopic signature. Previous δ34S measurements of atmospheric COS are scarce and there have been no direct measurements of two important components: the δ34S of oceanic COS emissions, and the isotopic fractionation of COS during plant uptake (15, 2527). In contrast to previous studies that used assessments for these isotopic values, our aim was to directly measure the isotopic values of these missing components, and to determine the tropospheric COS δ34S variability over space and time.  相似文献   

18.
19.
Earth’s largest biotic crisis occurred during the Permo–Triassic Transition (PTT). On land, this event witnessed a turnover from synapsid- to archosauromorph-dominated assemblages and a restructuring of terrestrial ecosystems. However, understanding extinction patterns has been limited by a lack of high-precision fossil occurrence data to resolve events on submillion-year timescales. We analyzed a unique database of 588 fossil tetrapod specimens from South Africa’s Karoo Basin, spanning ∼4 My, and 13 stratigraphic bin intervals averaging 300,000 y each. Using sample-standardized methods, we characterized faunal assemblage dynamics during the PTT. High regional extinction rates occurred through a protracted interval of ∼1 Ma, initially co-occurring with low origination rates. This resulted in declining diversity up to the acme of extinction near the DaptocephalusLystrosaurus declivis Assemblage Zone boundary. Regional origination rates increased abruptly above this boundary, co-occurring with high extinction rates to drive rapid turnover and an assemblage of short-lived species symptomatic of ecosystem instability. The “disaster taxon” Lystrosaurus shows a long-term trend of increasing abundance initiated in the latest Permian. Lystrosaurus comprised 54% of all specimens by the onset of mass extinction and 70% in the extinction aftermath. This early Lystrosaurus abundance suggests its expansion was facilitated by environmental changes rather than by ecological opportunity following the extinctions of other species as commonly assumed for disaster taxa. Our findings conservatively place the Karoo extinction interval closer in time, but not coeval with, the more rapid marine event and reveal key differences between the PTT extinctions on land and in the oceans.

Mass extinctions are major perturbations of the biosphere resulting from a wide range of different causes including glaciations and sea level fall (1), large igneous provinces (2), and bolide impacts (3, 4). These events caused permanent changes to Earth’s ecosystems, altering the evolutionary trajectory of life (5). However, links between the broad causal factors of mass extinctions and the biological and ecological disturbances that lead to species extinctions have been difficult to characterize. This is because ecological disturbances unfold on timescales much shorter than the typical resolution of paleontological studies (6), particularly in the terrestrial record (68). Coarse-resolution studies have demonstrated key mass extinction phenomena including high extinction rates and lineage turnover (7, 9), changes in species richness (10), ecosystem instability (11), and the occurrence of disaster taxa (12). However, finer time resolutions are central to determining the association and relative timings of these effects, their potential causal factors, and their interrelationships. Achieving these goals represents a key advance in understanding the ecological mechanisms of mass extinctions.The end-Permian mass extinction (ca. 251.9 Ma) was Earth’s largest biotic crisis as measured by taxon last occurrences (1315). Large outpourings from Siberian Trap volcanism (2) are the likely trigger of calamitous climatic changes, including a runaway greenhouse effect and ocean acidification, which had profound consequences for life on land and in the oceans (1618). An estimated 81% of marine species (19) and 89% of tetrapod genera became extinct as established Permian ecosystems gave way to those of the Triassic. In the ocean, this included the complete extinction of reef-forming tabulate and rugose corals (20, 21) and significant losses in previously diverse ammonoid, brachiopod, and crinoid families (22). On land, many nonmammalian synapsids became extinct (16), and the glossopterid-dominated floras of Gondwana also disappeared (23). Stratigraphic sequences document a global “coral gap” and “coal gap” (24, 25), suggesting reef and forest ecosystems were rare or absent for up to 5 My after the event (26). Continuous fossil-bearing deposits documenting patterns of turnover across the Permian–Triassic transition (PTT) on land (27) and in the oceans (28) are geographically widespread (29, 30), including marine and continental successions that are known from China (31, 32) and India (33). Continental successions are known from Russia (34), Australia (35), Antarctica (36), and South Africa’s Karoo Basin (Fig. 1 and 3740), the latter providing arguably the most densely sampled and taxonomically scrutinized (4143) continental record of the PTT. The main extinction has been proposed to occur at the boundary between two biostratigraphic zones with distinctive faunal assemblages, the Daptocephalus and Lystrosaurus declivis assemblage zones (Fig. 1), which marks the traditional placement of the Permian–Triassic geologic boundary [(37) but see ref. 44]. Considerable research has attempted to understand the anatomy of the PTT in South Africa (38, 39, 4552) and to place it in the context of biodiversity changes across southern Gondwana (53, 54) and globally (29, 31, 32, 44, 47, 55).Open in a separate windowFig. 1.Map of South Africa depicting the distribution of the four tetrapod fossil assemblage zones (Cistecephalus, Daptocephalus, Lystrosaurus declivis, Cynognathus) and our two study sites where fossils were collected in this study (sites A and B). Regional lithostratigraphy and biostratigraphy within the study interval are shown alongside isotope dilution–thermal ionization mass spectrometry dates retrieved by Rubidge et al., Botha et al., and Gastaldo et al. (37, 44, 80). The traditional (dashed red line) and associated PTB hypotheses for the Karoo Basin (37, 44) are also shown. Although traditionally associated with the PTB, the DaptocephalusLystrosaurus declivis Assemblage Zone boundary is defined by first appearances of co-occurring tetrapod assemblages, so its position relative to the three PTB hypotheses is unchanged. The Ripplemead member (*) has yet to be formalized by the South African Committee for Stratigraphy.Decades of research have demonstrated the richness of South Africa’s Karoo Basin fossil record, resulting in hundreds of stratigraphically well-documented tetrapod fossils across the PTT (37, 39, 56). This wealth of data has been used qualitatively to identify three extinction phases and an apparent early postextinction recovery phase (39, 45, 51). Furthermore, studies of Karoo community structure and function have elucidated the potential role of the extinction and subsequent recovery in breaking the incumbency of previously dominant clades, including synapsids (11, 57). Nevertheless, understanding patterns of faunal turnover and recovery during the PTT has been limited by the scarcity of quantitative investigations. Previous quantitative studies used coarsely sampled data (i.e., assemblage zone scale, 2 to 3 Ma time intervals) to identify low species richness immediately after the main extinction, potentially associated with multiple “boom and bust” cycles of primary productivity based on δ13C variation during the first 5 My of the Triassic (41, 58). However, many details of faunal dynamics in this interval remain unknown. Here, we investigate the dynamics of this major tetrapod extinction at an unprecedented time resolution (on the order of hundreds of thousands of years), using sample-standardized methods to quantify multiple aspects of regional change across the Cistecephalus, Daptocephalus, and Lystrosaurus declivis assemblage zones.  相似文献   

20.
Interactions between proteins lie at the heart of numerous biological processes and are essential for the proper functioning of the cell. Although the importance of hydrophobic residues in driving protein interactions is universally accepted, a characterization of protein hydrophobicity, which informs its interactions, has remained elusive. The challenge lies in capturing the collective response of the protein hydration waters to the nanoscale chemical and topographical protein patterns, which determine protein hydrophobicity. To address this challenge, here, we employ specialized molecular simulations wherein water molecules are systematically displaced from the protein hydration shell; by identifying protein regions that relinquish their waters more readily than others, we are then able to uncover the most hydrophobic protein patches. Surprisingly, such patches contain a large fraction of polar/charged atoms and have chemical compositions that are similar to the more hydrophilic protein patches. Importantly, we also find a striking correspondence between the most hydrophobic protein patches and regions that mediate protein interactions. Our work thus establishes a computational framework for characterizing the emergent hydrophobicity of amphiphilic solutes, such as proteins, which display nanoscale heterogeneity, and for uncovering their interaction interfaces.

Protein–protein interactions play a crucial role in numerous biological processes, ranging from signal transduction and immune response to protein aggregation and phase behavior (13). Consequently, being able to understand, predict, and modulate protein interactions has important implications for understanding cellular processes and mitigating the progression of disease (4, 5). A necessary first step toward this ambitious goal is uncovering the interfaces through which proteins interact (68). In principle, identifying hydrophobic protein regions, which interact weakly with water, should be a promising strategy for uncovering protein interaction interfaces (9, 10). Indeed, the release of weakly interacting hydration waters from hydrophobic regions can drive protein interactions, as well as other aqueous assemblies (1113). However, even when the structure of a protein is available at atomistic resolution, it is challenging to identify its hydrophobic patches because they are not uniformly nonpolar, but display variations in polarity and charge at the nanoscale. Moreover, the emergent hydrophobicity of a protein patch stems from the collective response of protein hydration waters to the nanoscale chemical and topographical patterns displayed by the patch (1420) and cannot be captured by simply counting the number of nonpolar groups in the patch, or even through more involved additive approaches, such as hydropathy scales or surface-area models (2128).To address this challenge, we build upon seminal theoretical advances and molecular simulation studies, which have shown that near a hydrophobic surface, it is easier to disrupt surface–water interactions and form interfacial cavities (2934). To uncover protein regions that have the weakest interactions with water, here, we employ specialized molecular simulations, wherein protein–water interactions are disrupted by systematically displacing water molecules from the protein hydration shell (3537). By identifying the protein patches that nucleate cavities most readily in our simulations, we are then able to uncover the most hydrophobic protein regions. Interestingly, we find that both hydrophobic and hydrophilic protein patches are highly heterogeneous and contain comparable numbers of nonpolar and polar atoms. Our results thus highlight the nontrivial relationship between the chemical composition of protein patches and their emergent hydrophobicity (2426), and further emphasize the importance of accounting for the collective solvent response in characterizing protein hydrophobicity (16). We then interrogate whether the most hydrophobic protein patches, which nucleate cavities readily, are also likely to mediate protein interactions. Across five proteins that participate in either homodimer or heterodimer formation, we find that roughly 60 to 70% of interfacial contacts and only about 10 to 20% of noncontacts nucleate cavities. Our work thus provides a versatile computational framework for characterizing hydrophobicity and uncovering interaction interfaces of not just proteins, but also of other complex amphiphilic solutes, such as cavitands, dendrimers, and patchy nanoparticles (3841).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号