共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
C. M. Middeldorp M. C. T. Slof‐Op ‘t Landt S. E. Medland C. E. M. van Beijsterveldt M. Bartels G. Willemsen J.‐J. Hottenga E. J. C. de Geus H. E. D. Suchiman C. V. Dolan M. C. Neale P. E. Slagboom D. I. Boomsma 《Genes, Brain & Behavior》2010,9(7):808-816
There are two major hypotheses regarding the etiology of anxiety and depression: the mono‐amine hypothesis and the hypothesis of an abnormal stress response acting partly via reduced neurogenesis. Association studies have focused on genes involved in these processes, but with inconclusive results. This study investigated the effect of 45 single nucleotide polymorphisms (SNPs) in genes encoding for serotonin receptors 1A, 1D, 2A, catechol‐O‐methyltransferase (COMT), tryptophane hydroxylase type 2 (TPH2), brain derived neurotrophic factor (BDNF), PlexinA2 and regulators of G‐protein‐coupled signaling (RGS) 2, 4, 16. Anxious depression (A/D) symptoms were assessed five times in 11 years in over 11 000 adults with 1504 subjects genotyped and at age 7, 10, 12 and during adolescence in over 20 000 twins with 1078 subjects genotyped. In both cohorts, a longitudinal model with one latent factor loading on all A/D measures over time was analysed. The genetic association effect modeled at the level of this latent factor was 60% and 70% heritable in the children and adults, respectively, and explained around 50% of the total phenotypic variance. Power analyses showed that the samples contained 80% power to detect an effect explaining between 1.4% and 3.6% of the variance. However, no SNP showed a consistent effect on A/D. To conclude, this longitudinal study in children and adults found no association of SNPs in the serotonergic system or core regulators of neurogenesis with A/D. Overall, there has been no convincing evidence, so far, for a role of genetic variation in these pathways in the development of anxiety and depression. 相似文献
3.
4.
Many insects contain diverse gut microbial communities. While several studies have focused on a single or small group of species, comparative studies of phylogenetically diverse hosts can illuminate general patterns of host–microbiota associations. In this study, we tested the hypotheses that (i) host diet and (ii) host taxonomy structure intestinal bacterial community composition among insects. We used published 16S rRNA gene sequence data for 58 insect species in addition to four beetle species sampled from the Sevilleta National Wildlife Refuge to test these hypotheses. Overall, gut bacterial species richness in these insects was low. Decaying wood xylophagous insects harboured the richest bacterial gut flora (102.8 species level operational taxonomic units (OTUs)/sample ± 71.7, 11.8 ± 5.9 phylogenetic diversity (PD)/sample), while bees and wasps harboured the least rich bacterial communities (11.0 species level OTUs/sample ± 5.4, 2.6 ± 0.8 PD/sample). We found evidence to support our hypotheses that host diet and taxonomy structure insect gut bacterial communities (P < 0.001 for both). However, while host taxonomy was important in hymenopteran and termite gut community structure, diet was an important community structuring factor particularly for insect hosts that ingest lignocellulose‐derived substances. Our analysis provides a baseline comparison of insect gut bacterial communities from which to test further hypotheses concerning proximate and ultimate causes of these associations. 相似文献
5.
《Animal : an international journal of animal bioscience》2012,6(7):1129-1138
Grasslands being used in sheep farming systems are managed under a variety of agricultural production, recreational and conservational objectives. Although sheep grazing is rarely considered the best method for delivering conservation objectives in seminatural temperate grasslands, the literature does not provide unequivocal evidence on the impact of sheep grazing on pasture biodiversity. Our aim was therefore to review evidence of the impacts of stocking rate, grazing period and soil fertility on plant communities and arthropod populations in both mesotrophic grasslands typical of agriculturally improved areas and in native plant communities. We therefore conducted a literature search of articles published up to the end of the year 2010 using ‘sheep’ and ‘grazing’ as keywords, together with variables describing grassland management, plant community structure or arthropod taxa. The filtering process led to the selection of 48 articles, with 42 included in the stocking rate dataset, 9 in the grazing period dataset and 10 in the soil fertility dataset. The meta-analysis did not reveal any significant trends for plant species richness or plant community evenness along a wide stocking rate gradient. However, we found frequent shifts in functional groups or plant species abundance that could be explained by the functional properties of the plants in the community. The meta-analysis confirmed that increasing soil fertility decreased plant species richness. Despite the very limited dataset, plant species richness was significantly greater in autumn-grazed pastures than in ungrazed areas, which suggests that choosing an appropriate grazing period would be a promising option for preserving biodiversity in sheep farming systems. Qualitative review indicated that low grazing intensity had positive effects on Orthoptera, Hemiptera (especially phytophagous Auchenorrhyncha) and, despite a diverse range of feeding strategies, for the species richness of Coleoptera. Lepidoptera, which were favoured by more abundant flowering plants, also benefited from low grazing intensities. Spider abundance and species richness were higher in ungrazed than in grazed pastures. In contrast, there are insufficient published studies to draw any firm conclusions on the benefits of late grazing or stopping fertilization on insect diversity, and no grounds for including any of this information in decision support tools at this stage. 相似文献
6.
Dieter F. Hochuli 《Austral ecology》2001,26(5):563-570
Herbivorous insects exploit many different plants and plant parts and often adopt different feeding strategies throughout their life cycle. The conceptual framework for investigating insect–plant interactions relies heavily on explanations invoking plant chemistry, neglecting a suite of competing and interacting pressures that may also limit herbivory. In the present paper, the methods by which ontogeny, feeding strategies and morphological characters inhibit herbivory by mandibulate holometabolous insects are examined. The emphasis on mechanical disruption of plant cells in the insect digestive strategy changes the relative importance of plant ‘defences’, increasing the importance of leaf structure in inhibiting herbivory. Coupled with the implications of substantial morphological and behavioural changes in ontogeny, herbivores adopt a range of approaches to herbivory that are independent of plant chemistry alone. Many insect herbivores exhibit substantial ontogenetic character displacement in mandibular morphology. This is tightly correlated with changes in feeding strategy, with changes to the cutting edges of mandibles increasing the efficiency of feeding. The changes in feeding strategy are also characterized by changes in feeding behaviour, with many larvae feeding gregariously in early instars. Non‐nutritive hypotheses considering the importance of natural enemies, shelter‐building and thermoregulation may also be invoked to explain the ontogenetic consequences of changes to feeding behaviour. There is a need to integrate these factors into a framework considering the gamut of potential explanations of insect herbivory, recognizing that ontogenetic constraints are not only viable explanations but a logical starting point. The interrelations between ontogeny, size, morphology and behaviour highlight the complexity of insect–plant relationships. Given the many methods used by insect herbivores to overcome the challenges of consuming foliage, the need for species‐specific and stage‐ specific research investigating ontogeny and host use by insect herbivores is critical for developing general theories of insect–plant interactions. 相似文献
7.
We studied how interactions between disturbances, succession, human alterations and other habitat and landscape attributes affect bird community patterns in a lower reach of a large West Carpathian river Váh with complex disturbance and alteration histories. Breeding-bird communities, their habitats (54 variables) and surrounding landscapes (11 metrics) were sampled using standardized point counts with limited distances at 40 riparian sites divided among two transects along a 12.9 km river stretch. The most frequent and abundant birds were generalists typically associated with forest edge habitats, such as Parus major, Sylvia atricapilla, Fringilla coelebs, Oriolus oriolus, Phylloscopus collybita, Sturnus vulgaris, Turdus merula and Luscinia megarhynchos. Abundances show significant increase at the lower transect responding apparently to greater size and heterogeneity of riparian habitats and more abundant food supply linked to more diverse and intense human influences in a suburban zone. Both indirect (NMDS) and direct ordination (CCA) revealed remarkably large number of evenly important factors underlying riparian bird-habitat interactions. It suggests considerable environmental heterogeneity and complexity of these interactions as a likely outcome of long and complex disturbance and alteration histories of the area. Yet structure and relative importance of first two gradients (longitudinal and lateral linkages) remains simple and stable, complying well with predictions of river continuum concept and stream ecosystem theory. Of the nine statistically significant variables most strongly correlated with first two CCA axes, percentages of Helianthus tuberosus, footpaths, fields, Calystegia sepium and steep banks uphold our hypotheses predicting significant effects of invasive species, visitor disturbances, agricultural land use and unaltered river banks/bed on bird community composition and structure. A small but significant contribution of patch size standard deviation within a 150 m radius to the CCA model provides the sole evidence for a hypothesized effect of adjacent terrestrial landscapes on riparian bird communities over different scales of patch size variability. Percentages of fields, invasive species and vertical banks along with average tree diameter were also the most productive predictors across our generalized linear models of riparian bird species diversity, evenness and abundance. Adopting an integrated river basin management, maintaining or restoring both longitudinal and lateral connectivity, taking advantage of natural processes and traditional management practices to maintain or restore riverine biodiversity can be recommended by our data in support of more systematic and evidence-based decision-making. 相似文献
8.
Rainfall is the key driver of woody cover and life-history attributes in arid grassy biomes where disturbance is mostly rare
and of low intensity. However, relatively little is known about the causes of woody community assembly in arid systems that
are subject to periodic intense fire disturbance. In the central Australian desert region, grassland and shrubland fire can
occur following above average rainfall. Patterns of species regeneration response (resprouting vs. reseeding) are poorly documented
in this region. We tested the effects of rainfall and fire on species’ resprouting response across the latitudinal rainfall–fire
gradient using constrained ordination of 385 sites and general linear models. A resprouting response was significantly greater
in grassland habitat as well as at the high end of the rainfall–fire gradient. The frequency of epicormic stem resprouting
also increased along the rainfall–fire gradient. We attribute this pattern to the combined effects of frequent fire and rapid
gap closure on seedlings of slow-growing, fire-killed woody species in higher rainfall grasslands. In addition, we also demonstrated
that rapidly maturing fire-recruiting species are similarly favoured by high fire disturbance. In arid grassy ecosystems,
unlike in mesic savanna, flammable grassland supports a mix of resprouting and recruitment functional types, and habitat membership
cannot be predicted by resprouting capacity. Regions, such as central Australia, that are characterised by grassland–shrubland
mosaics of high and low fuel biomass, respectively, pose specific challenges to fire ecology research that are possibly best
dealt with by focussing modelling at the habitat scale. 相似文献
9.
10.
《Genes & nutrition》2015,10(5)
In e-health intervention studies, there are concerns about the reliability of internet-based, self-reported (SR) data and about the potential for identity fraud. This study introduced and tested a novel procedure for assessing the validity of internet-based, SR identity and validated anthropometric and demographic data via measurements performed face-to-face in a validation study (VS). Participants (n = 140) from seven European countries, participating in the Food4Me intervention study which aimed to test the efficacy of personalised nutrition approaches delivered via the internet, were invited to take part in the VS. Participants visited a research centre in each country within 2 weeks of providing SR data via the internet. Participants received detailed instructions on how to perform each measurement. Individual’s identity was checked visually and by repeated collection and analysis of buccal cell DNA for 33 genetic variants. Validation of identity using genomic information showed perfect concordance between SR and VS. Similar results were found for demographic data (age and sex verification). We observed strong intra-class correlation coefficients between SR and VS for anthropometric data (height 0.990, weight 0.994 and BMI 0.983). However, internet-based SR weight was under-reported (Δ −0.70 kg [−3.6 to 2.1], p < 0.0001) and, therefore, BMI was lower for SR data (Δ −0.29 kg m−2 [−1.5 to 1.0], p < 0.0001). BMI classification was correct in 93 % of cases. We demonstrate the utility of genotype information for detection of possible identity fraud in e-health studies and confirm the reliability of internet-based, SR anthropometric and demographic data collected in the Food4Me study.Trial registration: ( NCT01530139http://clinicaltrials.gov/show/). NCT01530139
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-015-0476-0) contains supplementary material, which is available to authorized users. 相似文献11.
SUMMARY Understanding the relationship between egg size, development time, and juvenile size is critical to explaining patterns of life-history evolution in marine invertebrates. Currently there is conflicting information about the effects of changes in egg size on the life histories of echinoid echinoderms. We sought to resolve this conflict by manipulating egg size and food level during the development of two planktotrophic echinoid echinoderms: the green sea urchin, Strongylocentrotus droebachiensis and the sand dollar, Echinarachnius parma . Based on comparative datasets, we predicted that decreasing food availability and egg size would increase development time and reduce juvenile size. To test our prediction, blastomere separations were performed in both species at the two-cell stage to reduce egg volume by 50%, producing whole- and half-size larvae that were reared to metamorphosis under high or low food levels. Upon settlement, age at metamorphosis, juvenile size, spine number, and spine length were measured. As predicted, reducing egg size and food availability significantly increased age at metamorphosis and reduced juvenile quality. Along with previous egg size manipulations in other echinoids, this study suggests that the relationship between egg size, development time, and juvenile size is strongly dependent upon the initial size of the egg. 相似文献
12.
Globally, moss associated invertebrates remain poorly studied and it is largely unknown to what extent their diversity is driven by local environmental conditions or the landscape context. Here, we investigated small scale drivers of invertebrate communities in a moss landscape in a temperate forest in Western Europe. By comparing replicate quadrats of 5 different moss species in a continuous moss landscape, we found that mosses differed in invertebrate density and community composition. Although, in general, richness was similar among moss species, some invertebrate taxa were significantly linked to certain moss species. Only moss biomass and not relative moisture content could explain differences in invertebrate densities among moss species. Second, we focused on invertebrate communities associated with the locally common moss species Kindbergia praelonga in isolated moss patches on dead tree trunks to look at effects of patch size, quality, heterogeneity and connectivity on invertebrate communities. Invertebrate richness was higher in patches under closed canopies than under more open canopies, presumably due to the higher input of leaf litter and/or lower evaporation. In addition, increased numbers of other moss species in the same patch seemed to promote invertebrate richness in K. praelonga, possibly due to mass effects. Since invertebrate richness was unaffected by patch size and isolation, dispersal was probably not limiting in this system with patches separated by tens of meters, or stochastic extinctions may be uncommon. Overall, we conclude that invertebrate composition in moss patches may not only depend on local patch conditions, in a particular moss species, but also on the presence of other moss species in the direct vicinity. 相似文献
13.
Craig E. Williamson Courtney Salm Sandra L. Cooke Jasmine E. Saros 《Hydrobiologia》2010,652(1):395-396
Plankton in mountain lakes are confronted with generally higher levels of incident ultraviolet radiation (UVR), lower temperatures,
and shorter growing seasons than their lower elevation counterparts. The direct inhibitory effects of high UVR and low temperatures
on montane phytoplankton are widely recognized. Yet little is known about the indirect effects of these two abiotic factors
on phytoplankton, and more specifically whether they alter zooplankton grazing rates which may in turn influence phytoplankton.
Here, we report the results of field microcosm experiments that examine the impact of temperature and UVR on phytoplankton
growth rates and zooplankton grazing rates (by adult female calanoid copepods). We also examine consequent changes in the
absolute and relative abundance of the four dominant phytoplankton species present in the source lake (Asterionella formosa, Dinobryon sp., Discostella stelligera, and Fragilaria crotonensis). All four species exhibited higher growth rates at higher temperatures and three of the four species (all except Dinobryon) exhibited lower growth rates in the presence of UVR versus when shielded from UVR. The in situ grazing rates of zooplankton
had significant effects on all species except Asterionella. Lower temperatures significantly reduced grazing rates on Fragilaria and Discostella, but not Dinobryon. While UVR had no effect on zooplankton grazing on any of the four species, there was a significant interaction effect of
temperature and UVR on zooplankton grazing on Dinobryon. Discostella and Dinobryon increased in abundance relative to the other species in the presence of UVR. Colder temperatures, the presence of zooplankton,
and UVR all had consistently negative effects on rates of increase in overall phytoplankton biomass. These results demonstrate
the importance of indirect as well as direct effects of climate forcing by UVR and temperature on phytoplankton community
composition in mountain lakes, and suggest that warmer climates and higher UVR levels may favor certain species over others. 相似文献
14.
Freshwater biodiversity has shown to be highly vulnerable to climate warming, alpine cold stenotherm populations being especially at risk of getting extinct. This paper aims at identifying the environmental factors favouring cold stenotherm species in alpine ponds. This information is required to provide management recommendations for habitats restoration or creation, needed for the mitigation of the effects of climate warming on alpine freshwater biodiversity. Cold stenotherm species richness as well as total (i.e. stenotherm and eurytherm) richness were analyzed for aquatic plants, Coleoptera and Odonata in 26 subalpine and alpine ponds from Switzerland and were related to environmental factors ecologically relevant for pond biodiversity. Our results confirmed that the set of environmental variables governing pond biodiversity in alpine or subalpine ponds is specific to altitude. Altitude and macrophyte presence were important drivers of cold stenotherm and total species richness, whereas connectivity did not show any significant relation. Therefore, the management of pond biodiversity has to be ‘altitude-specific’. Nevertheless, cold stenotherm species from the investigated alpine ponds do not show some specific requirements if compared to the other species inhabiting these ponds. Therefore, both total and cold stenotherm species richness could be favoured by the same management measures. 相似文献
15.
《中国科学:生命科学英文版》2015,(5)
The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved —in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age(estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted(the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns(DBH 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied with tree shape, forest type, and damage type. Understanding this dependency will guide restoration after freezing rain and snow disturbances. 相似文献
16.
Carlos Alberto de Sousa Rodrigues-Filho Ronaldo César Gurgel-Lourenço Luis Artur Valões Bezerra Edson Fontes de Oliveira Rafael Pereira Leitão Danielle Sequeira Garcez Jorge Iván Sánchez-Botero 《Hydrobiologia》2018,824(1):93-108
The spread of antibiotic-resistant bacteria is a threatening risk for human health at a global scale. Improved knowledge on the cycle of antibiotic resistance spread between human and the environment is a major requirement for the management of the current crisis. Compared to the well-studied cycle in clinical settings much less is known about the factor allowing their persistence in the environment. In fact, lakes and rivers exposed to high anthropogenic impact seem to become long-term reservoirs for resistance genes. The presence of antibiotic resistance genes (ARGs) within the resident microbiome of large subalpine lakes (i.e. Lake Geneva, Lake Maggiore) has recently been investigated in both the water column and the sediment. These studies suggest a correlation between the abundance of some ARGs and the anthropogenic impact. Within the system, however, abiotic factors and the food-web structure determine the survival of specific bacterial genotypes and thus the resistance genes they harbour. Thus, a growing body of work suggests an important role of ecological interactions in the persistence or elimination of such genes from the environment. This article reviews the current literature regarding the presence of ARGs in subalpine lakes, the impact of anthropogenic pollution on their appearance and the potential role of various ecological interactions on their persistence in the system. 相似文献
17.
How does salinity influence habitat selection and growth in juvenile American eels Anguilla rostrata? 下载免费PDF全文
B. Boivin M. Castonguay C. Audet S. A. Pavey M. Dionne L. Bernatchez 《Journal of fish biology》2015,86(2):765-784
The influence of salinity on habitat selection and growth in juvenile American eels Anguilla rostrata captured in four rivers across eastern Canada was assessed in controlled experiments in 2011 and 2012. Glass eels were first categorized according to their salinity preferences towards fresh (FW), salt (SW) or brackish water (BW) and the growth rate of each group of elvers was subsequently monitored in controlled FW and BW environments for 7 months. Most glass eels (78–89%) did not make a choice, i.e. they remained in BW. Salinity preferences were not influenced by body condition, although a possible role of pigmentation could not be ruled out. Glass eels that did make a choice displayed a similar preference for FW (60–75%) regardless of their geographic origin but glass eels from the St Lawrence Estuary displayed a significantly higher locomotor activity than those from other regions. Neither the salinity preferences showed by glass eels in the first experiment nor the rearing salinities appeared to have much influence on growth during the experiments. Elvers from Nova Scotia, however, reached a significantly higher mass than those from the St Lawrence Estuary thus supporting the hypothesis of genetically (or epigenetically) based differences for growth between A. rostrata from different origins. These results provide important ecological knowledge for the sustained exploitation and conservation of this threatened species. 相似文献
18.
Clonal plants spreading horizontally and forming a network structure of ramets exhibit complex growth patterns to maximize resource uptake from the environment. They respond to spatial heterogeneity by changing their internode length or branching frequency. Ramets definitively root in the soil but stay interconnected for a varying period of time thus allowing an exchange of spatial and temporal information. We quantified the foraging response of clonal plants depending on the local soil quality sampled by the rooting ramet (i.e. the present information) and the resource variability sampled by the older ramets (i.e. the past information). We demonstrated that two related species, Potentilla reptans and P. anserina, responded similarly to the local quality of their environment by decreasing their internode length in response to nutrient-rich soil. Only P. reptans responded to resource variability by decreasing its internode length. In both species, the experience acquired by older ramets influenced the plastic response of new rooted ramets: the internode length between ramets depended not only on the soil quality locally sampled but also on the soil quality previously sampled by older ramets. We quantified the effect of the information perceived at different time and space on the foraging behavior of clonal plants by showing a non-linear response of the ramet rooting in the soil of a given quality. These data suggest that the decision to grow a stolon or to root a ramet at a given distance from the older ramet results from the integration of the past and present information about the richness and the variability of the environment. 相似文献
19.
20.
Intraspecific density regulation influences the synchronization of local population dynamics through dispersal. Spatial synchrony in turn may jeopardize metapopulation persistence. Joining results from previous studies suggests that spatial synchrony is highest at moderate over-compensation and is low at compensating and at very strong over-compensating density regulation. We scrutinize this supposition of a unimodal relationship using a process-based metapopulation model with explicit local population dynamics. We extend the usually studied range of density regulation to under-compensation and analyse resulting metapopulation persistence. We find peaks of spatial synchrony not only at over-compensatory but also under-compensatory density regulation and show that effects of local density compensation on synchrony follow a bimodal rather than unimodal relationship. Persistence of metapopulations however, shows a unimodal relationship with a broad plateau of high persistence from compensatory to over-compensatory density regulation. This range of high persistence comprises both levels of low and high spatial synchrony. Thus, not synchrony alone jeopardizes metapopulation persistence, but only in interplay with high local extinction risk. The functional forms of the relations of density compensation with spatial synchrony and persistence are robust to increases in dispersal mortality, landscape dynamics, or density dependence of dispersal. However, with each of these increases the maxima of spatial synchrony and persistence shift to higher over-compensation and levels of synchrony are reduced. Overall, for over-compensation high landscape connectivity has negative effects while for under-compensation connectivity affects persistence positively. This emphasizes the importance of species life-history traits for management decisions with regard to landscape connectivity: while dispersal corridors are essential for species with under-compensatory density regulation, they may have detrimental effects for endangered species with over-compensation. 相似文献