共查询到19条相似文献,搜索用时 53 毫秒
1.
2.
该文提出了一种基于数学形态学的带障碍约束的聚类算法。通过数学形态学的膨胀运算,进行连通区域的寻找,同时借助于进行膨胀运算的结构元素,确定障碍物与连通区域是否相交。算法与DBCluC算法不同的是:通过结构元素,大大减少了需要进行相交判断的点的数量,具有较高的时间效率。 相似文献
3.
基于数学形态学的围棋棋群聚类算法 总被引:1,自引:0,他引:1
计算机围棋可以模拟人类棋手的棋群聚类能力以提高搜索效率。本研究以数学形态学为工具,在形式化基础上采用带有限制条件的膨胀运算进行棋群的初步聚类,结合其它一些启发式搜索方法完成棋群的最终聚类,并结合实战对局评价了此算法的性能,指出了此算法的应用价值。 相似文献
4.
谱聚类是近年来出现的一类性能优越的聚类算法,能对任意形状的数据进行聚类, 但算法对尺度参数比较敏感,利用聚类集成良好的鲁棒性和泛化能力,本文提出了基于谱聚类的聚类集成算法.该算法首先利用谱聚类算法的内在特性构造多样性的聚类成员; 然后,采用连接三元组算法计算相似度矩阵,扩充了数据点之间的相似性信息;最后,对相似度矩阵使用谱聚类算法得到最终的集成结果. 为了使算法能扩展到大规模应用,利用Nystrm采样算法只计算随机采样数据点之间以及随机采样数据点与剩余数据点之间的相似度矩阵,从而有效降低了算法的计算复杂度. 本文算法既利用了谱聚类算法的优越性能,同时又避免了精确选择尺度参数的问题.实验结果表明:较之其他常见的聚类集成算法,本文算法更优越、更有效,能较好地解决数据聚类、图像分割等问题. 相似文献
5.
基于形态学聚类算法图像配准仿真研究 总被引:1,自引:0,他引:1
研究图像配准精确度问题。由于两张图片几何关系及量度均有不同,要达到配准效果应有空间一致性。传统的聚类图像配准算法进行图像配准时,配准精度较低,算法复杂度高等不足。为了有效提高图像配准的精确度,提出了一种改进的数学形态学和聚类算法相结合的图像配准方法。算法首先改进的基于空间模式均值聚类对图像进行区域分块,并对分块的位置进行空间聚类,并准确计算出基准图像的最后的配准位置,并采用数学形态学方法对配准后的图像进行边缘处理,最后评估配准图像的质量。仿真结果表明,提出的改进的算法有效的提高了配准精确度,是一种可行性有效的图像配准算法,为图像配准提供了依据。 相似文献
6.
针对传统的聚类集成算法难以高效地处理海量数据的聚类分析问题,提出一种基于MapReduce的并行FCM聚类集成算法。算法利用随机初始聚心来获取具有差异化的聚类成员,通过建立聚类成员簇间OVERLAP矩阵来寻找逻辑等价簇,最后利用投票法共享聚类成员中数据对象的分类情况得出最终的聚类结果。实验证明,该算法具有良好的精确度,加速比和扩展性,具有处理较大规模数据集的能力。 相似文献
7.
近年来深度学习的迅速发展为聚类研究提供了一个有力的工具;并衍生出了许多基于深度神经网络的聚类方法。在这些方法中;深度嵌入聚类(DEC)因其可对深度表示学习和聚类分配同时进行优化的优势而日益受到关注。但是;深度嵌入聚类的一个局限性在于其超参数λ的敏感性;而往往需要诉诸人工调节来解决。对此;提出一种基于集成学习的改进深度嵌入聚类(IDECEL)方法。相较于寻求单个最优超参数的常规做法;提出以多样化超参数λ构建一组具有差异性的基聚类;并结合熵理论对基聚类集合的簇不确定性进行评估与加权;进而在簇与样本之间构建一个局部加权二部图模型;再将之高效划分以得到一个更优聚类结果。在多个数据集上的实验结果表明;提出的IDECEL方法不仅可缓解常规DEC算法超参数敏感性的问题;同时也表现出比其他多个深度聚类和集成聚类方法更为鲁棒的聚类性能。 相似文献
8.
《计算机应用与软件》2014,(8)
近年来,由于机器学习能够很好地解决恶意软件检测问题,因而受到了广泛的关注。为了进一步提高恶意软件的检测性能,将机器学习中的动态集成选择应用到恶意软件检测中。为了满足检测性能和保证检测的实时性需求,在动态集成选择的基础上,提出一种基于聚类的动态集成选择算法CDES(Cluster based Dynamic Ensemble Selection strategy)。该方法首先通过聚类得到多个聚类中心,然后为每一个聚类中心选择一组分类器组成集成分类器。当检测未知样本时,首先找到与该样本最近的聚类中心,那么用于分类该聚类中心的集成分类器就是当前测试样本的集成分类器。最终的检测结果也由这一组分类器通过投票得到。实验中,将所提算法与其他相关算法作比较,实验结果表明所提算法明显优于其他算法。同时,所提算法运行时间远远低于其他算法,可以满足系统的实时性要求。 相似文献
9.
聚类算法能从空间数据库中直接发现一些有意义的聚类结构而不需要背景知识,是空间数据发掘和知识发现的重要手段。在分析已有聚类算法的基础上,提出了一种基于数学形态学的聚类算法,该算法能够处理任意形状的聚类,采用启发式方法自动确定最优聚类数。同时,该算法也可以在矢量型空间数据库中得到实现。试验表明算法是可行和有效的,且能处理存在噪音的数据。 相似文献
10.
基于矩阵谱分析的文本聚类集成算法 总被引:1,自引:0,他引:1
聚类集成技术可有效提高单聚类算法的精度和稳定性,其中的关键问题是如何根据不同的聚类成员组合为更好的聚类结果.文中引入谱聚类算法解决文本聚类集成问题,设计基于正则化拉普拉斯矩阵的谱算法(NLM-SA).该算法基于代数变换,通过求解小规模矩阵的特征值和特征向量间接获得正则化拉普拉斯矩阵的特征向量,并用于后续聚类.进一步研究谱聚类算法的关键思想,设计基于超边转移概率矩阵的谱算法(HTMSA).该算法通过求解超边的低维嵌入间接获得文本的低维嵌入,并用于后续K均值算法.在TREC和Reuters文本集上的实验结果验证NLMSA和HTMSA的有效性,它们都获得比其它基于图划分的集成算法更为优越的结果.HTMSA获得的结果比NLMSA略差,而时间和空间需求则比NLMSA低得多. 相似文献
11.
12.
对自适应选取结构元权值以及如何有效去除混合噪声是多结构元形态学边缘检测中尚待解决的两个问题,在深入研究各种形态学边缘检测方法的基础上,提出了基于灰度距离逻辑函数和基于边缘方差两种自适应多结构元形态学边缘检测方法。首先对原始图像进行最优阈值分割二值化,其次从灰度距离和边缘方差两个角度分别实现结构元的自适应选取,最后选择形态算子进行边缘检测。方法具有更好的抗噪性和灵活性,能更加精确的体现原有图像的边缘方向信息。通过仿真实验,验证了方法的可行性和有效性。 相似文献
13.
基于形态学多尺度算法的肺部CT图像边缘检测 总被引:1,自引:0,他引:1
医学图像边缘检测是医学图像处理和分析的基础,传统边缘检测算子对噪声敏感,检测到的图像边缘效果较差.本文提出了一种基于形态学多尺度算法的肺部CT图像边缘检测方法.首先对形态学边缘检测算子进行改进,然后利用形态学多尺度算法检测各尺度下的图像边缘,最后采用非均匀权值方法合成最终边缘.实验结果表明:该方法在检测出肺部图像边缘的同时能够很好地抑制噪声,是一种有效的肺部CT图像边缘检测方法. 相似文献
14.
提出了一种基于集成技术和谱聚类技术的混合数据聚类算法CBEST。它利用聚类集成技术产生混合数据间的相似性,这种相似性度量没有对数据特征值分布模型做任何的假设。基于此相似性度量得到的待聚类数据的相似性矩阵,应用谱聚类算法得到混合数据聚类结果。大量真实和人工数据上的实验结果验证了CBEST的有效性和它对噪声的鲁棒性。与其它混合数据聚类算法的比较研究也证明了CBEST的优越性能。CBEST还能有效融合先验知识,通过参数的调节来设置不同属性在聚类中的权重。 相似文献
15.
网格聚类以网格为单位学习聚簇,速度快、效率高。但它过于依赖密度阂值的选择,并且构造的每个聚簇边界呈锯齿状,不能很好地识别平滑边界曲面。针对该问题,提出一种新的面向网格问题的聚类融合算法(RG) . RG不是通过随机抽样数据集或随机初始化相关参数来创建有差异的划分,而是随机地将特征划分为K个子集,使用特征变换得到K个不同的旋转变换基,形成新的特征空间,并将网格聚类算法应用于该特征空间,从而构建有差异的划分。实验表明,RU能够有效地划分任意形状、大小的数据集,并能有效地解决网格聚类过分依赖于密度阂值选择以及边界处理过于粗糙的问题,其精度明显高于单个网格聚类。 相似文献
16.
不平衡分类在现实生活中有着广泛应用,提高不平衡数据的分类精度一直是相关领域中的热门课题。针对已有欠采样方法容易保留多数类噪声样本的问题,提出一种基于聚类融合欠采样的改进欠采样方法。结合聚类融合与孤立森林(Isolation Forest, iForest)方法,筛选、删除异常指数高的多数类噪声样本,有效提高模型中的样本质量,增强欠采样算法的抗噪声能力。在7个UCI和KEEL不平衡数据集上的实验结果表明,该算法在处理不平衡分类问题时,AUC值和F1值均有一定程度的提升。将算法应用在蛋白质定位预测,提升了预测效果。 相似文献
17.
This paper presents a fast simulated annealing framework for combining multiple clusterings based on agreement measures between partitions, which are originally used to evaluate a clustering algorithm. Although we can follow a greedy strategy to optimize these measures as the objective functions of clustering ensemble, it may suffer from local convergence and simultaneously incur too large computational cost. To avoid local optima, we consider a simulated annealing optimization scheme that operates through single label changes. Moreover, for the measures between partitions based on the relationship (joined or separated) of pairs of objects, we can update them incrementally for each label change, which ensures that our optimization scheme is computationally feasible. The experimental evaluations demonstrate that the proposed framework can achieve promising results. 相似文献
18.
一种基于调节形态学的骨架提取算法 总被引:6,自引:0,他引:6
对目标图像提取其骨架,在目标检测、图像编码及光学字符识别等计算机视觉、图像处理与模式识别领域有着广泛的应用。简要介绍了调节形态学的基本算子和性质,在此基础上提出了一种二值图像的调节形态学骨架提取算法,最后给出了用调节形态学方法获取二值图像骨架的实例。 相似文献
19.
Clustering ensemble integrates multiple base clustering results to obtain a consensus result and thus improves the stability and robustness of the single clustering method. Since it is natural to use a hypergraph to represent the multiple base clustering results, where instances are represented by nodes and base clusters are represented by hyperedges, some hypergraph based clustering ensemble methods are proposed. Conventional hypergraph based methods obtain the final consensus result by partitioning a pre-defined static hypergraph. However, since base clusters may be imperfect due to the unreliability of base clustering methods, the pre-defined hypergraph constructed from the base clusters is also unreliable. Therefore, directly obtaining the final clustering result by partitioning the unreliable hypergraph is inappropriate. To tackle this problem, in this paper, we propose a clustering ensemble method via structured hypergraph learning, i.e., instead of being constructed directly, the hypergraph is dynamically learned from base results, which will be more reliable. Moreover, when dynamically learning the hypergraph, we enforce it to have a clear clustering structure, which will be more appropriate for clustering tasks, and thus we do not need to perform any uncertain postprocessing, such as hypergraph partitioning. Extensive experiments show that, our method not only performs better than the conventional hypergraph based ensemble methods, but also outperforms the state-of-the-art clustering ensemble methods. 相似文献