首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
An extended advancing front technique (AFT) with shift operations and Riemann metric named as shifting‐AFT is presented for finite element mesh generation on 3D surfaces, especially 3D closed surfaces. Riemann metric is used to govern the size and shape of the triangles in the parametric space. The shift operators are employed to insert a floating space between real space and parametric space during the 2D parametric space mesh generation. In the previous work of closed surface mesh generation, the virtual boundaries are adopted when mapping the closed surfaces into 2D open parametric domains. However, it may cause the mesh quality‐worsening problem. In order to overcome this problem, the AFT kernel is combined with the shift operator in this paper. The shifting‐AFT can generate high‐quality meshes and guarantee convergence in both open and closed surfaces. For the shifting‐AFT, it is not necessary to introduce virtual boundaries while meshing a closed surface; hence, the boundary discretization procedure is largely simplified, and moreover, better‐shaped triangles will be generated because there are no additional interior constraints yielded by virtual boundaries. Comparing with direct methods, the shifting‐AFT avoids costly and unstable 3D geometrical computations in the real space. Some examples presented in this paper have demonstrated the advantages of shift‐AFT in 3D surface mesh generation, especially for the closed surfaces. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A new approach to generate finite point meshes on 2D flat surface and any bi‐variate parametric surfaces is suggested. It can be used to generate boundary‐conforming anisotropic point meshes with node spacing compatible with the metric specifications defined in a background point mesh. In contrast to many automatic mesh generation schemes, the advancing front concept is abandoned in the present method. A few simple basic operations including boundary offsetting, node insertion and node deletion are used instead. The point mesh generation schemeis initialized by a boundary offsetting procedure. The point mesh quality is then improved by node insertion and deletion such that optimally spaced nodes will fill up the entire problem domain. In addition to the point mesh generation scheme, a new way to define the connectivity of a point mesh is also suggested. Furthermore, based on the connectivity information, a new scheme to perform smoothing for a point mesh is proposed toimprove the node spacing quality of the mesh. Timing shows thatdue to the simple node insertion and deletion operations, the generation speed of the new scheme is nearly 10 times faster than a similar advancing front mesh generator. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
An octree‐based mesh generation method is proposed to create reasonable‐quality, geometry‐adapted unstructured hexahedral meshes automatically from triangulated surface models without any sharp geometrical features. A new, easy‐to‐implement, easy‐to‐understand set of refinement templates is developed to perform local mesh refinement efficiently even for concave refinement domains without creating hanging nodes. A buffer layer is inserted on an octree core mesh to improve the mesh quality significantly. Laplacian‐like smoothing, angle‐based smoothing and local optimization‐based untangling methods are used with certain restrictions to further improve the mesh quality. Several examples are shown to demonstrate the capability of our hexahedral mesh generation method for complex geometries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a new procedure to improve the quality of triangular meshes defined on surfaces. The improvement is obtained by an iterative process in which each node of the mesh is moved to a new position that minimizes a certain objective function. This objective function is derived from algebraic quality measures of the local mesh (the set of triangles connected to the adjustable or free node). If we allow the free node to move on the surface without imposing any restriction, only guided by the improvement of the quality, the optimization procedure can construct a high‐quality local mesh, but with this node in an unacceptable position. To avoid this problem the optimization is done in the parametric mesh, where the presence of barriers in the objective function maintains the free node inside the feasible region. In this way, the original problem on the surface is transformed into a two‐dimensional one on the parametric space. In our case, the parametric space is a plane, chosen in terms of the local mesh, in such a way that this mesh can be optimally projected performing a valid mesh, that is, without inverted elements. Several examples and applications presented in this work show how this technique is capable of improving the quality of triangular surface meshes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A method for the rapid construction of meshes over intersecting triangulated shapes is described. The method is based on an algorithm that automatically generates a surface mesh from intersecting triangulated surfaces by means of Boolean intersection/union operations. After the intersection of individual components is obtained, the exposed surface parts are extracted. The algorithm is intended for rapid interactive construction of non‐trivial surfaces in engineering design, manufacturing, visualization and molecular modelling applications. Techniques to make the method fast and general are described. The proposed algorithm is demonstrated on a number of examples, including intersections of multiple spheres, planes and general engineering shapes, as well as generation of surface and volume meshes around clusters of intersecting components followed by the computation of flow field parameters. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a computational framework for quasi‐static brittle fracture in three‐dimensional solids. The paper sets out the theoretical basis for determining the initiation and direction of propagating cracks based on the concept of configurational mechanics, consistent with Griffith's theory. Resolution of the propagating crack by the FEM is achieved by restricting cracks to element faces and adapting the mesh to align it with the predicted crack direction. A local mesh improvement procedure is developed to maximise mesh quality in order to improve both accuracy and solution robustness and to remove the influence of the initial mesh on the direction of propagating cracks. An arc‐length control technique is derived to enable the dissipative load path to be traced. A hierarchical hp‐refinement strategy is implemented in order to improve both the approximation of displacements and crack geometry. The performance of this modelling approach is demonstrated on two numerical examples that qualitatively illustrate its ability to predict complex crack paths. All problems are three‐dimensional, including a torsion problem that results in the accurate prediction of a doubly‐curved crack. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we propose efficient and robust unstructured mesh generation methods based on computed tomography (CT) and magnetic resonance imaging (MRI) data, in order to obtain a patient‐specific geometry for high‐fidelity numerical simulations. Surface extraction from medical images is carried out mainly using open source libraries, including the Insight Segmentation and Registration Toolkit and the Visualization Toolkit, into the form of facet surface representation. To create high‐quality surface meshes, we propose two approaches. One is a direct advancing front method, and the other is a modified decimation method. The former emphasizes the controllability of local mesh density, and the latter enables semi‐automated mesh generation from low‐quality discrete surfaces. An advancing‐front‐based volume meshing method is employed. Our approaches are demonstrated with high‐fidelity tetrahedral meshes around medical geometries extracted from CT/MRI data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Dependence on mesh orientation impacts adversely the quality of computational solutions generated by cohesive zone models. For instance, when considering crack propagation along interfaces between finite elements of 4k structured meshes, both extension of crack length and crack angle are biased according to the mesh configuration. To address mesh orientation dependence in 4k structured meshes and to avoid undesirable crack patterns, we propose the use of nodal perturbation (NP) and edge‐swap (ES) topological operation. To this effect, the topological data structure TopS (Int. J. Numer. Meth. Engng 2005; 64 : 1529–1556), based on topological entities (node, element, vertex, edge and facet), is utilized so that it is possible to access adjacency information and to manage a consistent data structure in time proportional to the number of retrieved entities. In particular, the data structure allows the ES operation to be done in constant time. Three representative dynamic fracture examples using ES and NP operators are provided: crack propagation in the compact compression specimen, local branching instability, and fragmentation. These examples illustrate the features of the present computational framework in simulating a range of physical phenomena associated with cracking. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Structured mesh quality optimization methods are extended to optimization of unstructured triangular, quadrilateral, and mixed finite element meshes. New interpretations of well‐known nodally based objective functions are made possible using matrices and matrix norms. The matrix perspective also suggests several new objective functions. Particularly significant is the interpretation of the Oddy metric and the smoothness objective functions in terms of the condition number of the metric tensor and Jacobian matrix, respectively. Objective functions are grouped according to dimensionality to form weighted combinations. A simple unconstrained local optimum is computed using a modified Newton iteration. The optimization approach was implemented in the CUBIT mesh generation code and tested on several problems. Results were compared against several standard element‐based quality measures to demonstrate that good mesh quality can be achieved with nodally based objective functions. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

11.
A new fully automatic hex‐dominant mesh generation technique of an arbitrary 3D geometric domain is presented herein. The proposed method generates a high‐quality hex‐dominant mesh by: (1) controlling the directionality of the output hex‐dominant mesh; and (2) avoiding ill‐shaped elements induced by nodes located too closely to each other. The proposed method takes a 3D geometric domain as input and creates a hex‐dominant mesh consisting mostly of hexahedral elements, with additional prism and tetrahedral elements. Rectangular solid cells are packed on the boundary of and inside the input domain to obtain ideal node locations for a hex‐dominant mesh. Each cell has a potential energy field that mimics a body‐centred cubic (BCC) structure (seen in natural substances such as NaCl) and the cells are moved to stable positions by a physically based simulation. The simulation mimics the formation of a crystal pattern so that the centres of the cells provide ideal node locations for a hex‐dominant mesh. Via the advancing front method, the centres of the packed cells are then connected to form a tetrahedral mesh, and this is converted to a hex‐dominant mesh by merging some of the tetrahedrons. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
13.
论文给出了基于黎曼度量的参数曲面网格生成的改进铺砖算法。阐述了曲面自身的黎曼度量,并且运用黎曼度量计算二维参数域上单元节点的位置,从而使映射到三维物理空间的四边形网格形状良好。文中对原有铺砖法相交处理进行了改进,在运用铺砖法的同时调用UG-NX强大的二次开发库函数获取相应的信息,直接在UG-NX模型的表面生成四边形网格。算例表明,该法能在曲面上生成质量好的网格。  相似文献   

14.
Automatic mesh generation and adaptive refinement methods for complex three-dimensional domains have proven to be very successful tools for the efficient solution of complex applications problems. These methods can, however, produce poorly shaped elements that cause the numerical solution to be less accurate and more difficult to compute. Fortunately, the shape of the elements can be improved through several mechanisms, including face- and edge-swapping techniques, which change local connectivity, and optimization-based mesh smoothing methods, which adjust mesh point location. We consider several criteria for each of these two methods and compare the quality of several meshes obtained by using different combinations of swapping and smoothing. Computational experiments show that swapping is critical to the improvement of general mesh quality and that optimization-based smoothing is highly effective in eliminating very small and very large angles. High-quality meshes are obtained in a computationally efficient manner by using optimization-based smoothing to improve only the worst elements and a smart variant of Laplacian smoothing on the remaining elements. Based on our experiments, we offer several recommendations for the improvement of tetrahedral meshes. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
An effective mesh generation algorithm is proposed to construct mesh representations for arbitrary fractures in 3D rock masses. With the development of advanced imaging techniques, fractures in a rock mass can be clearly captured by a high‐resolution 3D digital image but with a huge data set. To reduce the data size, corresponding mesh substitutes are required in both visualization and numerical analysis. Fractures in rocks are naturally complicated. They may meet at arbitrary angles at junctions, which could derive topological defects, geometric errors or local connectivity flaws on mesh models. A junction weight is proposed and applied to distinguish fracture junctions from surfaces by an adequate threshold. We take account of fracture junctions and generate an initial surface mesh by a simplified centroidal Voronoi diagram. To further repair the initial mesh, an innovative umbrella operation is designed and adopted to correct mesh topology structures and preserve junction geometry features. Constrained with the aforementioned surface mesh of fracture, a tetrahedral mesh is generated and substituted for the 3D image model to be involved in future numerical analysis. Finally, we take two fractured rock samples as application examples to demonstrate the usefulness and capability of the proposed meshing approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
基于映射函数理论提出二维/三维流场的网格生成新方法。针对实际应用中对场函数变密度的要求,提出可控制网格疏密度的插值公式,并以此对典型物体周围流场进行网格剖分,验证其有效性。针对圆形域(柱形域)流场网格生成质量的缺陷,提出在目标域中建立内置块的新策略,统计分析网格最小内角分布,并与原方法对比分析,以验证改进效果。运用自编程序,对具有复杂外形的空间膜结构进行流场网格剖分,并将该网格导入Ansys-CFX软件,进而数值模拟结构表面风压分布。经验证,该方法可有效地运用于流场网格剖分。  相似文献   

17.
The paper presents a parallel tetrahedral mesh generation approach based on recursive bidivisions using triangular surfaces. Research was conducted for addressing issues concerning mesh generation reliability and element quality. A novel procedure employing local modification techniques is proposed for repairing the intersecting interdomain mesh instead of directly repeating the bidivision procedure, which improves the robustness of the complete meshing procedure significantly. In addition, a new parallel quality improvement scheme is suggested for optimizing the distributed volume meshes. The scheme is free of any communication cost and highly efficient. Finally, mesh experiments of hundreds of millions of elements are performed to demonstrate the reliability, effectiveness and efficiency of the proposed method and its potential applications to large‐scale simulations of complex aerodynamics models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In the edge‐based smoothed finite element method (ES‐FEM), one needs only the assumed displacement values (not the derivatives) on the boundary of the edge‐based smoothing domains to compute the stiffness matrix of the system. Adopting this important feature, a five‐node crack‐tip element is employed in this paper to produce a proper stress singularity near the crack tip based on a basic mesh of linear triangular elements that can be generated automatically for problems with complicated geometries. The singular ES‐FEM is then formulated and used to simulate the crack propagation in various settings, using a largely coarse mesh with a few layers of fine mesh near the crack tip. The results demonstrate that the singular ES‐FEM is much more accurate than X‐FEM and the existing FEM. Moreover, the excellent agreement between numerical results and the reference observations shows that the singular ES‐FEM offers an efficient and high‐quality solution for crack propagation problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A new algorithm for constructing full quadrilateral anisotropic meshes on 3D surfaces is proposed in this paper. The proposed method is based on the advancing front and the systemic merging techniques. Full quadrilateral meshes are constructed by systemically converting triangular elements in the background meshes into quadrilateral elements.By using the metric specifications to describe the element characteristics, the proposed algorithm is applicable to convert both isotropic and anisotropic triangular meshes into full quadrilateral meshes. Special techniques for generating anisotropic quadrilaterals such as new selection criteria of base segment for merging, new approaches for the modifications of the background mesh and construction of quadrilateral elements, are investigated and proposed in this study. Since the final quadrilateral mesh is constructed from a background triangular mesh and the merging procedure is carried out in the parametric space, the mesh generator is robust and no expensive geometrical computation that is commonly associated with direct quadrilateral mesh generation schemes is needed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, a new method for inserting a surface as an internal boundary into an existing unstructured tetrahedral mesh is developed. The surface is discretized by initially placing vertices on its bounding curves, defining a length scale at every location on each boundary curve based on the local underlying mesh, and equidistributing length scale along these curves between vertices. The surface is then sampled based on this boundary discretization, resulting in a surface mesh spaced in a way that is consistent with the initial mesh. The new points are then inserted into the mesh, and local refinement is performed, resulting in a final mesh containing a representation of the surface while preserving mesh quality. The advantage of this algorithm over generating a new mesh from scratch is in allowing for the majority of existing simulation data to be preserved and not have to be interpolated onto the new mesh. This algorithm is demonstrated in two and three dimensions on problems with and without intersections with existing internal boundaries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号