首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Cytosolic sulfotransferases (SULTs) in mammals are involved in the biotransformation and homeostasis of various endogenous and xenobiotic compounds. The current study aimed to examine the sulfation of contraceptive compounds by various human cytosolic SULTs and to investigate the inhibitory effects and mode of action of these compounds on the sulfation of 17beta-estradiol, a major endogenous estrogen. A systematic study using all eleven known human cytosolic SULTs revealed the differential substrate specificity of these enzymes for the eight representative contraceptive compounds and two endogenous estrogens (estrone and 17beta-estradiol) tested as substrates. Activity data showed that SULT1A1 displayed the strongest activity toward 17alpha-ethynylestradiol. Kinetic studies revealed that the V (max) value of the sulfation of 17alpha-ethynylestradiol by SULT1A1 was 1.64 times that of the sulfation of 17beta-estradiol, while the K (m) values were almost equal for the two compounds. The inhibitory effects of three contraceptive compounds on the sulfation of 17beta-estradiol by SULT1A1 were examined. IC(50) values determined were 0.193, 1.84, and 2.98 mM, respectively, for 19-norethindrone acetate, ethynodiol diacetate and mifepristone. Kinetic analyses indicated that the mechanism underlying the inhibition by these contraceptives is of a mixed noncompetitive type. Metabolic labeling experiments confirmed the sulfation of contraceptive compounds and the release of their sulfated derivatives by HepG2 human hepatoma cells. Collectively, the results obtained suggest a role of sulfation in the metabolism of contraceptive compounds in vivo. Moreover, in view of their inhibitory effects on the sulfation of 17beta-estradiol, these compounds may potentially act to disrupt the homeostasis of endogenous estrogens.  相似文献   

3.
Falany JL  Falany CN 《Steroids》2006,71(10):880-885
Tibolone is used therapeutically as a hormone replacement agent and has beneficial effects on osteoporosis and hot flushes as well as libido in post-menopausal women without stimulatory effects in the breast and endometrium. The lack of effect in the endometrium is due in part to the tissue specific sulfation of tibolone and its active metabolites in endometrial tissues. Tibolone is metabolized into 3alpha-OH and 3beta-OH tibolone as well as the Delta4-isomer. Tibolone and the Delta4-isomer bind and activate progesterone and androgen receptors whereas 3alpha-OH and 3beta-OH tibolone activate the estrogen receptors. Human endometrium and Ishikawa endometrial adenocarcinoma cells express SULT1E1 that efficiently sulfates both 3-OH tibolone metabolites and has trace activity with tibolone but no activity with the Delta4-isomer. Treatment of Ishikawa cells with all four tibolone compounds resulted in the induction of SULT1E1 activity similar to the induction by progesterone. The induction of SULT1E1 was inhibited by RU486 indicating a role for the progesterone receptor. Sulfation of the tibolone compounds by Ishikawa cells and Ishikawa cells expressing physiological levels of SULT1E1 activity resulted in the sulfation of tibolone and the 3-OH metabolites but not Delta4-tibolone. These results indicate that the lack of endometrial stimulation involves induction of SULT1E1 and the selective sulfation and inactivation of the estrogenic 3-OH tibolones and interconversion of the tibolone metabolites to generate the progestagenic non-sulfated Delta4-isomer.  相似文献   

4.
Cytosolic sulfotransferase 2B1b (SULT2B1b) catalyzes the sulfation of 3β-hydroxysteroids and functions as a selective cholesterol and oxysterol sulfotransferase. Activation of liver X receptors (LXRs) by oxysterols has been known to be an antiproliferative factor. Overexpression of SULT2B1b impairs LXR's response to oxysterols, by which it regulates lipid metabolism. The aim of this study was to investigate in vivo and in vitro effects of SULT2B1b on liver proliferation and the underlying mechanisms. Primary rat hepatocytes and C57BL/6 mice were infected with adenovirus encoding SULT2B1b. Liver proliferation was determined by measuring the proliferating cell nuclear antigen (PCNA) immunostaining labeling index. The correlation between SULT2B1b and PCNA expression in mouse liver tissues was determined by double immunofluorescence. Gene expressions were evaluated by quantitative real-time PCR and Western blot analysis. SULT2B1b overexpression in mouse liver tissues increased PCNA-positive cells in a dose- and time-dependent manner. The increased expression of PCNA in mouse liver tissues was only observed in the SULT2B1b transgenic cells. Small interference RNA SULT2B1b significantly inhibited cell cycle regulatory gene expressions in primary rat hepatocytes. LXR activation by T0901317 effectively suppressed SULT2B1b-induced gene expression in vivo and in vitro. SULT2B1b may promote hepatocyte proliferation by inactivating oxysterol/LXR signaling.  相似文献   

5.
By searching the expressed sequence tag database, a zebrafish cDNA encoding a putative cytosolic sulfotransferase (SULT) was identified. Sequence analysis indicated that this zebrafish SULT belongs to the SULT1 cytosolic SULT gene family. The recombinant form of this novel zebrafish SULT, expressed using the pGEX-2TK expression system and purified from transformed BL21 (DE3) Escherichia coli cells, displayed sulfating activities specifically for estrone and 17beta-estradiol among various endogenous compounds tested as substrates. The enzyme also exhibited sulfating activities toward some xenobiotic phenolic compounds. This new zebrafish SULT showed dual pH optima, at 6.5 and 10-10.5, with estrone or n-propyl gallate as substrate. Kinetic constants of the sulfation of estrone, 17beta-estradiol, and n-propyl gallate were determined. Developmental stage-dependent expression experiments revealed a significant level of expression of this novel zebrafish estrogen-sulfating SULT at the beginning of the hatching period during embryogenesis, which continued throughout the larval stage onto maturity.  相似文献   

6.
7.
The mechanism of the pancreatic ductal HCO secretion defect in cystic fibrosis (CF) is not well defined. However, a lack of apical Cl(-)/HCO exchange may exist in CF. To test this hypothesis, we examined the expression of Cl(-)/HCO exchangers in cultured pancreatic duct epithelial cells with physiological features prototypical of CF [CFPAC-1 cells lacking a functional CF transmembrane conductance regulator (CFTR)] or normal duct cells (CFPAC-1 cells transfected with functional wild-type CFTR, CFPAC-WT). Cl(-)/HCO exchange activity, assayed with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in cells grown on coverslips, increased about twofold in cells transfected with functional CFTR. This correlated with increased apical (36)Cl influx in cells expressing functional CFTR and grown on permeable support. Northern hybridizations indicated the induction of downregulated in adenoma (DRA) in cells expressing functional CFTR. The expression of putative anion transporter PAT1 also increased significantly in cells expressing functional CFTR. DRA was detected at high levels in native mouse pancreas by Northern hybridization and localized to the apical domain of the duct cells by immunohistochemical studies. In conclusion, CFTR upregulates DRA and PAT1 expression in cultured pancreatic duct cells. We propose that the pancreatic HCO secretion defect in CF patients is partly due to the downregulation of apical Cl(-)/HCO exchange activity mediated by DRA (and possibly PAT1).  相似文献   

8.
9.
In addition to serving as a biomarker of oxidative/nitrative stress, elevated levels of nitrotyrosine have been shown to cause DNA damage or trigger apoptosis. Whether the body is equipped with mechanisms for protecting against the potentially harmful nitrotyrosine remains unknown. The present study was designed to investigate the possibility that sulfation serves as a pathway for the metabolism/regulation of nitrotyrosine. Using metabolic labelling, nitrotyrosine O-[35S]sulfate was found to be produced and released into the medium of HepG2 human hepatoma cells labelled with [35S]sulfate in the presence of nitrotyrosine. To identify the enzyme(s) responsible for nitrotyrosine sulfation, a systematic study of all eleven known human cytosolic SULTs (sulfotransferases) was performed. Of the 11 enzymes tested, only SULT1A3 displayed sulfating activity toward nitrotyrosine. The pH-dependence and kinetic constants of SULT1A3 with nitrotyrosine or dopamine as substrate were determined. To examine whether the sulfation of nitrotyrosine occurs in the context of cellular physiology, HepG2 cells labelled with [35S]sulfate were treated with SIN-1 (morpholinosydnonimine), a peroxynitrite generator. Increments of nitrotyrosine O-[35S]sulfate were detected in the medium of HepG2 cells treated with higher concentrations of SIN-1. To gain insight into the physiological relevance of nitrotyrosine sulfation, a time-course study was performed using [3H]tyrosine-labelled HepG2 cells treated with SIN-1. The findings confirm that the bulk of free [3H]nitrotyrosine inside the cells was present in the unconjugated form. The proportion of sulfated [3H]nitrotyrosine increased dramatically in the medium over time, implying that sulfation may play a significant role in the metabolism of free nitrotyrosine.  相似文献   

10.
Alpha-crystallins comprise 35% of soluble proteins in the ocular lens and possess chaperone-like functions. Furthermore, the alphaA subunit (alphaA-crystallin) of alpha crystallin is thought to be "lens-specific" as only very low levels of expression were detected in a few non-lenticular tissues. Here we report that human alphaA-crystallin is expressed in human livers and is regulated by farnesoid X-activated receptor (FXR) in response to FXR agonists. AlphaA-crystallin was identified in a microarray screen as one of the most highly induced genes after treatment of HepG2 cells with the synthetic FXR ligand GW4064. Northern blot and quantitative real-time PCR analyses confirmed that alphaA-crystallin expression was induced in HepG2-derived cell lines and human primary hepatocytes and hepatic stellate cells in response to either natural or synthetic FXR ligands. Transient transfection studies and electrophoretic mobility shift assays revealed a functional FXR response element located in intron 1 of the human alphaA-crystallin gene. Importantly, immunohistochemical staining of human liver sections showed increased alphaA-crystallin expression in cholangiocytes and hepatocytes. As a member of the small heat shock protein family possessing chaperone-like activity, alphaA-crystallin may be involved in protection of hepatocytes from the toxic effects of high concentrations of bile acids, as would occur in disease states such as cholestasis.  相似文献   

11.
Constituent chemicals in garlic extract are known to induce phase I and phase II enzymes in rodent livers. Here we have utilized Car(+/+) and Car(-/-) mice to demonstrate that the nuclear xenobiotic receptor CAR regulated the induction of the estrogen sulfotransferase Sult1e1 gene by diallyl sulfide (DAS) treatment in mouse liver. DAS treatment caused CAR accumulation in the nucleus, resulting in a remarkable increase of SULT1E1 mRNA (3,200 fold) and protein in the livers of Car(+/+) females but not of Car(-/-) female mice. DAS also induced other CAR-regulated genes such as Cyp2b10, Cyp3a11 and Gadd45β. Compared with the rapid increase of these mRNA levels, which began as early as 6 hours after DAS treatment, the levels of SULT1E1 mRNA began increasing after 24 hours. This slow response to DAS suggested that CAR required an additional factor to activate the Sult1e1 gene or that this activation was indirect. Despite the remarkable induction of SULT1E1, there was no decrease in the serum levels of endogenous E2 or increase of estrone sulfate while the clearance of exogenously administrated E2 was accelerated in DAS treated mice.  相似文献   

12.
Breast cancer (BC) is the most commonly diagnosed cancer among American women; however, the development of post-menopausal BC is significantly lower in African Americans as compared to Caucasians. Hormonal stimulation is important in BC development and differences in the conversion of dehydroepiandrosterone (DHEA) into estrogens may be involved in the lower incidence of post-menopausal BC in African American women. DHEA sulfation by sulfotransferase 2B1b (SULT2B1b) is important in regulating the conversion of DHEA into estrogens in tissues. SULT2B1b is localized in both cytosol and nuclei of some tissues including cancerous and associated-normal breast tissue. Immunohistochemical staining was used to evaluate the total expression and subcellular localization of SULT2B1b in African American and Caucasian breast tissues. Cell fractionation, immunoblot analysis and sulfation assays were used to characterize the subcellular expression and activity of SULT2B1b in BC tissues and T-47D breast adenocarcinoma cells. Immunohistochemical analysis of SULT2B1b showed that African Americans had a significantly greater amount of SULT2B1b in epithelial cells of associated-normal breast tissue as compared to Caucasians. Also, more SULT2B1b in African American associated-normal breast epithelial cells was localized in the nuclei than in Caucasians. Equivalent levels of SULT2B1b were detected in breast adenocarcinoma tissues from both African American and Caucasian women. Nuclei isolation and immunoblot analysis of both BC tissue and human T-47D breast adenocarcinoma cells demonstrated that SULT2B1b is present in nuclei and cytoplasm.  相似文献   

13.
14.
15.
16.
The cause of the mucus clearance problems associated with cystic fibrosis remains poorly understood though it has been suggested that mucin hypersecretion, dehydration of mucins, and biochemical abnormalities in the glycosylation of mucins may be responsible. Since the biochemical and biophysical properties of a mucin are dependent on O-glycosylation, our aim was to evaluate the O-glycosylation of a single mucin gene product in matched pairs of cells that differed with respect to CFTR expression. An epitope-tagged MUC1 mucin cDNA (MUC1F) was used to detect variation in mucin glycosylation in stably transfected colon carcinoma cell lines HT29 and Caco2. The glycosylation of MUC1F mucin was evaluated in matched pairs of Caco2 cell lines that either express wild-type CFTR or have spontaneously lost CFTR expression. The general glycosylation pattern of MUC1F was evaluated by determining its reactivity with a series of monoclonal antibodies against known blood group and tumor-associated carbohydrate antigens. Metabolic labeling experiments were used to estimate the gross levels of glycosylation and sulfation of MUC1F mucin in these matched pairs of cell lines. Expression of CFTR in this experimental system did not affect the gross levels of glycosylation or sulfation of the MUC1F mucin nor the types of carbohydrates structures attached to the MUC1F protein.  相似文献   

17.
内含肽介导的氯离子通道蛋白CFTR的反式剪接   总被引:3,自引:3,他引:0  
研究利用内含肽(intein)的蛋白质反式剪接功能在大肠杆菌中对囊性纤维化跨膜传导调节因子(cystic fibrosis transmembrane regulator, CFTR)的反式剪接作用.CFTR基因突变导致一种常染色体隐性遗传疾病囊性纤维化(cystic fibrosis, CF).将CFTR的cDNA于剪接反应所需的保守性氨基酸残基Ser-660前断裂为N端和C端,分别与split mini Ssp DnaB 内含肽的106个氨基酸残基的N端和48个氨基酸残基的C端编码序列融合,构建到原核表达载体pBV220 诱导表达后SDS-PAGE可见预期大小剪接形成的CFTR蛋白条带,Western印迹用CFTR特异性抗体进一步证明为剪接所产生的CFTR蛋白,表明内含肽可有效催化CFTR的反式剪接.  相似文献   

18.
Cystic fibrosis (CF) is characterized by an exacerbated inflammatory pulmonary response with excessive production of inflammatory mediators. We investigated here the impact of cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction on prostaglandin E2 (PGE2) production and type IIA secreted phospholipase A2 (sPLA2-IIA) expression. We show that both resting and LPS-stimulated human respiratory epithelial cell line bearing DeltaF508 mutation on CFTR (CF cells) released more PGE2 than control cell line. This was accompanied by enhanced expression and activity of cyclooxygenase-2 in CF cells. PGE2 release was attenuated after experimentally induced retrafficking of the DeltaF508-CFTR at the plasma membrane. sPLA2-IIA expression occurred at higher levels in CF cells than in control cells and was enhanced by LPS and PGE2. Suppression of PGE2 synthesis by aspirin led to an inhibition of LPS-induced sPLA2-IIA expression. Higher activation of NF-kappaB was observed in CF cells compared with control cells and was enhanced by LPS. However, addition of PGE2 or aspirin had no effect on NF-kappaB activation. LPS-induced sPLA2-IIA expression was reduced by an NF-kappaB inhibitor. We suggest that the lack of the CFTR in the plasma membrane results in a PGE2 overproduction and an enhanced sPLA2-IIA expression. This expression is upregulated by NF-kappaB and amplified by PGE2 via a unidentified signaling pathway.  相似文献   

19.
One feature of the mutations thus far found to be associated with the disease cystic fibrosis (CF) is that many of them are clustered within the first nucleotide-binding domain (NBD) of the CF transmembrane conductance regulator (CFTR). We sought to discover the molecular basis for this clustering by introducing into the two NBDs of CFTR mutations either mimicking amino acid changes associated with CF or altering residues within highly conserved motifs. Synthesis and maturation of the mutant CFTR were studied by transient expression in COS cells. The ability of the altered proteins to generate cyclic AMP-stimulated anion efflux was assessed by using 6-methoxy-N-(sulfopropyl) quinolinium (SPQ) fluorescence measurements in HeLa cells expressing mutated plasmids. The results show that (i) all CF-associated mutants, with one exception, lack functional activity as measured in the SPQ assay, (ii) mutations in NBD1 are more sensitive to the effects of the same amino acid change than are the corresponding mutations in NBD2, (iii) cells transfected with plasmids bearing CF-associated mutations commonly but not exclusively lack mature CFTR, (iv) NBD mutants lacking mature CFTR fail to activate Cl- channels, and (v) the glycosylation of CFTR, per se, is not required for CFTR function. We reason that the structure of NBD1 itself or of the surrounding domains renders it particularly sensitive to mutational changes. As a result, most NBD1 mutants, but only a few NBD2 mutants, fail to mature or lack functional activity. These findings are consistent with the observed uneven distribution of CFTR missense mutations between NBD1 and NBD2 of CF patients.  相似文献   

20.
Chen Y  Chen X  Zhang S  Chen G 《Biological chemistry》2011,392(10):869-876
Cytosolic sulfotransferases (SULTs) catalyze the sulfation of hormones, neurotransmitters, and xenobiotics, increasing their water solubility. SULTs are not only important for xenobiotic detoxification but they also play important biological roles in the regulation of the activities of various biosignaling molecules and other cellular functions. In this study, we investigated the effects of influenza A virus lung infection on the expression of SULTs in the lung, brain, and liver of female C57BL/6 mice. Our results demonstrate for the first time that SULT2B1b enzyme activity and protein expression are significantly up-regulated in the lung and brain of female mice in response to lung influenza A virus infection. Real-time quantitative PCR results are consistent with Western blot and enzymatic activity data. In mouse liver, mSULT2B1b is not significantly changed. Enzyme activities, protein expression, and mRNA expression of SULT1A1 and SULT2A1 in the lung, brain, and liver of mice were not significantly affected by the infection. The induction of SULT2B1b may be used to inactivate natural liver X receptor ligands and activate the proliferation of T cells in response to influenza A virus infection in the lung and brain of mice. Our results raise the possibility that regulation of SULT2B1b may influence acquired immune responses to infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号