首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies whether cows with originally lower somatic cell count (SCC) are more susceptible to clinical mastitis (CM) than cows with higher somatic cell count, and evaluates the correlations between CM, SCC, and milk yield. Data were extracted from the Finnish national milk-recording database and from the health recording system. First and second lactation records of 87,861 Ayrshire cows calving between January 1998 and December 2000 were included. Traits studied were incidence of CM, test-day SCC, and test-day milk yield before and following CM. Genetic parameters were estimated using multitrait REML with a sire model. Results did not indicate that cows with genetically low SCC would be more susceptible to CM. The genetic correlation between CM in the first and second lactation was reasonably high (0.73), suggesting that susceptibility to mastitis remains similar across lactations. The genetic correlation between CM and milk yield traits was positive (from 0.38 to 0.56), confirming the genetic antagonism between production and udder health traits. The genetic correlation between SCC and milk was positive in the first lactation, but negative, or near zero in the second lactation. This indicates that breeding for lower SCC might not affect milk production in later lactations. The results of this study support the use of SCC as an indicator of mastitis and a tool for selection for mastitis resistance.  相似文献   

2.
《Journal of dairy science》2019,102(12):11225-11232
The main objective of this study was to assess the genetic background of colostrum yield and quality traits after calving in Holstein dairy cows. The secondary objective was to investigate genetic and phenotypic correlations among laboratory-based and on-farm–measured colostrum traits. The study was conducted in 10 commercial dairy herds located in northern Greece. A total of 1,074 healthy Holstein cows with detailed pedigree information were examined from February 2015 to September 2016. All cows were clinically examined on the day of calving and scored for body condition. All 4 quarters were machine-milked, and a representative and composite colostrum sample was collected and examined. Colostrum total solids (TS) content was determined on-farm using a digital Brix refractometer. Colostrum fat, protein, and lactose contents were determined using an infrared milk analyzer, and energy content was calculated using National Research Council (2001) equations. Dry period length (for cows of parity ≥2), milk yield of previous 305-d lactation (for cows of parity ≥2), age at calving, parity number, season of calving, time interval between calving and first colostrum milking, and milk yield were recorded. Each trait (colostrum yield and quality traits) was analyzed with a univariate mixed model, including fixed effects of previously mentioned factors and the random animal additive genetic effect. All available pedigrees were included in the analysis, bringing the total animal number to 5,662. Estimates of (co)variance components were used to calculate heritability for each trait. Correlations among colostrum traits were estimated with bivariate analysis using the same model. Mean percentage (±SD) colostrum TS, fat, protein, and lactose contents were 25.8 ± 4.7, 6.4 ± 3.3, 17.8 ± 4.0, and 2.2 ± 0.7%, respectively; mean energy content was 1.35 ± 0.3 Mcal/kg and mean colostrum yield was 6.18 ± 3.77 kg. Heritability estimates for the above colostrum traits were 0.27, 0.21, 0.19, 0.15, 0.22, and 0.04, respectively. Several significant genetic and phenotypic correlations were derived. The genetic correlation of TS content measured on-farm with colostrum protein was practically unity, whereas the correlation with energy content was moderate (0.61). Fat content had no genetic correlation with TS content; their phenotypic correlation was positive and low. Colostrum yield was not correlated genetically with any of the other traits. In conclusion, colostrum quality traits are heritable and can be amended with genetic selection.  相似文献   

3.
The aim of this study was to estimate genetic parameters for test-day milk urea nitrogen (MUN) and its relationships with milk production traits. Three test-day morning milk samples were collected from 1,953 Holstein-Friesian heifers located on 398 commercial herds in the Netherlands. Each sample was analyzed for somatic cell count, net energy concentration, MUN, and the percentage of fat, protein, and lactose. Genetic parameters were estimated using an animal model with covariates for days in milk and age at first calving, fixed effects for season of calving and effect of test or proven bull, and random effects for herd-test day, animal, permanent environment, and error. Coefficient of variation for MUN was 33%. Estimated heritability for MUN was 0.14. Phenotypic correlation of MUN with each of the milk production traits was low. The genetic correlation was close to zero for MUN and lactose percentage (−0.09); was moderately positive for MUN and net energy concentration of milk (0.19), fat yield (0.41), protein yield (0.38), lactose yield (0.22), and milk yield (0.24), and percentage of fat (0.18), and percentage of protein (0.27); and was high for MUN and somatic cell score (0.85). Herd-test day explained 58% of the variation in MUN, which suggests that management adjustments at herd-level can reduce MUN. This study shows that it is possible to influence MUN by herd practice and by genetic selection.  相似文献   

4.
The aim of the present study was to assess genetic variation and heritability of a novel indicator of udder health, milk differential somatic cell count (DSCC), which represents the percentage of neutrophils plus lymphocytes in the total somatic cell count (SCC). Furthermore, we estimated genetic and phenotypic correlations of DSCC with other milk traits routinely measured in Italian Holstein cows. Besides DSCC, test-day data included milk yield, composition traits (i.e., fat, protein, casein, and lactose percentages), pH, milk urea nitrogen, and SCC. After editing, the final data set included 10,709 test-day records of 5,142 cows in 299 herds. Mean of DSCC was 62.07%, which means that macrophages were approximately 38% of total SCC. Comparing our results with the literature offered compelling evidence of the importance of acquiring information about the proportion of the different cell types in milk to better define the udder health status. In addition, our analysis revealed, for the first time, that DSCC is a heritable trait, and heritability (0.08 ± 0.02) was higher than that of traditional somatic cell score (0.04 ± 0.02). Nevertheless, heritability of DSCC is still low compared with milk yield and quality traits. Single-trait analysis within parity showed that DSCC was less heritable in primiparous than in multiparous cows, whereas bivariate analysis confirmed that DSCC and somatic cell score were 2 different traits, as their genetic and phenotypic correlations differed from unity. From a genetic point of view, the DSCC was positively weakly associated with milk yield, lactose percentage, and milk urea nitrogen, and negatively associated with pH. Our findings contributed to the understanding of the genetic background of DSCC and are a precursor to the potential use of DSCC in breeding programs to enhance cow resistance to mastitis. However, further research is needed to determine the weight this novel trait should receive in a selection program aimed to reduce udder health problems.  相似文献   

5.
The objective of this research was to estimate the genetic correlations between milk mid-infrared-predicted fatty acid groups and production traits in first-parity Canadian Holsteins. Contents of short-chain, medium-chain, long-chain, saturated, and unsaturated fatty acid groupings in milk samples can be predicted using mid-infrared spectral data for cows enrolled in milk recording programs. Predicted fatty acid group contents were obtained for 49,127 test-day milk samples from 10,029 first-parity Holstein cows in 810 herds. Milk yield, fat and protein yield, fat and protein percentage, fat-to-protein ratio, and somatic cell score were also available for these test days. Genetic parameters were estimated for the fatty acid groups and production traits using multiple-trait random regression test day models by Bayesian methods via Gibbs sampling. Three separate 8- or 9-trait analyses were performed, including the 5 fatty acid groups with different combinations of the production traits. Posterior standard deviations ranged from <0.001 to 0.01. Average daily genetic correlations were negative and similar to each other for the fatty acid groups with milk yield (?0.62 to ?0.59) and with protein yield (?0.32 to ?0.25). Weak and positive average daily genetic correlations were found between somatic cell score and the fatty acid groups (from 0.25 to 0.36). Stronger genetic correlations with fat yield, fat and protein percentage, and fat-to-protein ratio were found with medium-chain and saturated fatty acid groups compared with those with long-chain and unsaturated fatty acid groups. Genetic correlations were very strong between the fatty acid groups and fat percentage, ranging between 0.88 for unsaturated and 0.99 for saturated fatty acids. Daily genetic correlations from 5 to 305 d in milk with milk, protein yield and percentage, and somatic cell score traits showed similar patterns for all fatty acid groups. The daily genetic correlations with fat yield at the beginning of lactation were decreasing for long-chain and unsaturated fatty acid groups and increasing for short-chain fatty acids. Genetic correlations between fat percentage and fatty acids were increasing at the beginning of lactation for short- and medium-chain and saturated fatty acids, but slightly decreasing for long-chain and unsaturated fatty acid groups. These results can be used in defining fatty acid traits and breeding objectives.  相似文献   

6.
The objective of this research was to estimate heritabilities of milk urea nitrogen (MUN) and lactose in the first 3 parities and their genetic relationships with milk, fat, protein, and SCS in Canadian Holsteins. Data were a random sample of complete herds (60,645 test day records of 5,022 cows from 91 herds) extracted from the edited data set, which included 892,039 test-day records of 144,622 Holstein cows from 4,570 herds. A test-day animal model with multiple-trait random regression and the Gibbs sampling method were used for parameter estimation. Regression curves were modeled using Legendre polynomials of order 4. A total of 6 separate 4-trait analyses, which included MUN, lactose, or both (yield or percentage) with different combinations of production traits (milk, fat and protein yield, fat and protein percentages, and somatic cell score) were performed. Average daily heritabilities were moderately high for MUN (from 0.384 to 0.414), lactose kilograms (from 0.466 to 0.539), and lactose percentage (from 0.478 to 0.508). Lactose yield was highly correlated with milk yield (0.979). Lactose percentage and MUN were not genetically correlated with milk yield. However, lactose percentage was significantly correlated with somatic cell score (−0.202). The MUN was correlated with fat (0.425) and protein percentages (0.20). Genetic correlations among parities were high for MUN, lactose percentage, and yield. Estimated breeding values (EBV) of bulls for MUN were correlated with fat percentage EBV (0.287) and EBV of lactose percentage were correlated with lactation persistency EBV (0.329). Correlations between lactose percentage and MUN with fertility traits were close to zero, thus diminishing the potential of using those traits as possible indicators of fertility.  相似文献   

7.
The objective of this study was to investigate whether alternative somatic cell count (SCC) traits are suitable as mastitis indicators in Canadian Holsteins. Mastitis data recorded by producers were available from the national dairy cattle health system in Canada. Mastitis was defined as a binary variable based on whether or not the cow had at least one mastitis case in the period from calving to 305 d after calving. The analyzed alternative SCC traits included mean somatic cell score (SCS) from different time periods, maximum SCS, standard deviation of SCS, excessive test-day SCC, and a peak pattern of test-day records with suspicion of mastitis. Data of 53,626 first-lactation Holstein cows from 1,666 herds across Canada were analyzed using linear animal models. A heritability of 0.02 was obtained for mastitis. For both mean SCS in early and late lactation, a heritability of 0.11 was estimated. Heritabilities of various patterns of SCC ranged from 0.01 to 0.07. Estimated genetic correlations were 0.69 and 0.68 between mastitis and mean SCS in early and late lactation, respectively. Higher genetic correlations were found between mastitis and the different SCC patterns (0.82 to 0.91). Sires with high breeding values for mastitis resistance had consistently higher percentage of healthy daughters than sires with low breeding values for mastitis resistance. Breeding values for mean SCS in early lactation, standard deviation of SCS, and an excessive test-day SCC pattern (at least one SCC test-day above 500,000) were the best predictors of the breeding value for mastitis resistance and explained in total 41% of the variation in relative breeding values for mastitis resistance. The results demonstrated that patterns of SCC provide additional information for genetic evaluations of mastitis resistance that cannot be explained by mean SCS alone.  相似文献   

8.
In the present study, 6 different mastitis data sets of 3 dairy herds with an overall herd size of 3200 German Holstein cows were analyzed. Data collection periods included the first 50, 100, or 300 d of lactation. The 3 data collection periods were analyzed with a lactation model and a test-day model. All models were animal threshold models. Mastitis frequencies in the lactation model data sets varied between 29 and 45%, and varied between 3 and 6% in the test-day model data sets. Depending on the period of data collection, heritabilities of liability to mastitis in the lactation models were 0.05 (50 d), 0.06 (100 d), and 0.07 (300 d). In the test-day models, heritabilities were slightly higher with values of 0.09 (50 and 100 d), and 0.06 (300 d). Between lactation models, the rank correlations between the relative breeding values were high and varied between 0.86 and 0.94. Rank correlations between the relative breeding values of the test-day models ranged from 0.68 to 0.87. The rank correlations between the relative breeding values of lactation models and test-day models varied from 0.51 and 0.80. Genetic correlations between mastitis and milk production traits were estimated with a linear animal test-day model. The correlations with mastitis were 0.29 (milk yield), 0.30 (fat yield), 0.20 (fat content), 0.34 (protein yield), and 0.20 (protein content). The estimated genetic correlation between mastitis and somatic cell score was 0.84.  相似文献   

9.
The aim of the present study was to characterize alternative somatic cell count (SCC) traits that could be exploited in genetic selection for mastitis resistance. Data were from 66,407 first-parity Holsteins in 404 herds. Novel SCC traits included average somatic cell score (SCS, log-transformation of SCC) in early lactation (SCS_150), standard deviation of SCS of the entire lactation (SCS_SD), the presence of at least one test-day (TD) SCC >400,000 cells/mL in the lactation, and the ratio of number of TD SCC >400,000 cells/mL to total number of TD in the lactation. Novel traits and lactation-mean SCS (SCS_LM) were analyzed using linear mixed or logistic regression models, including month of calving, year of calving, number of TD, and milk yield as fixed effects, and herd and residual as random terms. A multitrait linear animal model was applied to a random subset of 152 herds (n = 22,695 cows) to assess heritability of and genetic correlations between SCC traits. Alternative SCC traits were affected by the environmental factors included in the model; in particular, results suggested a seasonal effect and a tendency toward an improvement of the udder health status in the last years. Association was also found between novel SCC traits and milk production. Alternative SCC traits exhibited coefficients of additive genetic variation that were similar to or larger than that of traditional SCS_LM. Heritability of novel SCC traits was smaller than heritability of SCS_LM (0.126 ± 0.014), ranging from 0.044 ± 0.008 (SCS_SD) to 0.087 ± 0.010 (SCS_150). Genetic correlations between SCC traits ranged from 0.217 ± 0.096 (SCS_150 and SCS_SD) to 0.969 ± 0.010 (SCS_LM and SCS_150). Alternative SCC traits exhibited additive genetic variation that is potentially exploitable in breeding programs of Italian Holstein population to improve resistance to mastitis.  相似文献   

10.
In this study the genetic association during lactation of 2 clinical mastitis (CM) traits: CM1 (7 d before to 30 d after calving) and CM2 (31 to 300 d after calving) with test-day somatic cell score (SCS) and milk yield (MY) was assessed using multitrait random regression sire models. The data analyzed were from 27,557 first-lactation Finnish Ayrshire cows. Random regressions on second- and third-order Legendre polynomials were used to model the daily genetic and permanent environmental variances of test-day SCS and MY, respectively, while only the intercept term was fitted for CM. Results showed that genetic correlations between CM and the test-day traits varied during lactation. Genetic correlations between CM1 and CM2 and test-day SCS during lactation varied from 0.41 to 0.77 and from 0.34 to 0.71, respectively. Genetic correlations of test-day MY with CM1 and CM2 ranged from 0.13 to 0.51 and from 0.49 to 0.66, respectively. Correlations between CM1 and SCS were strongest during early lactation, whereas correlations between CM2 and SCS were strongest in late lactation. Genetic correlations lower than unity indicate that CM and SCS measure different aspects of the trait mastitis. Milk yield in early lactation was more strongly correlated with both CM1 and CM2 than milk yield in later lactation. This suggests that selection for higher lactation MY through selection on increased milk yield in early lactation will have a more deleterious effect on genetic resistance to mastitis than selection for higher yield in late lactation. The approach used in this study for the estimation of the genetic associations between test-day and CM traits could be used to combine information from traits with different data structures, such as test-day SCS and CM traits in a multitrait random regression model for the genetic evaluation of udder health.  相似文献   

11.
Chronic subclinical mastitis (SCM), characterized by changes in milk composition and high somatic cell count (SCC) in milk for a prolonged period of time, is often caused by a bacterial infection. Different levels of SCC have been suggested and used as threshold to identify subclinical infection. The aim of this study was to examine different definitions of SCM based on test-day SCC and estimate genetic parameters for these traits and their genetic correlation to milk production. Test-day SCC records from 1,209,128 Norwegian Red cows in lactation 1 to 3 were analyzed. Twelve SCM traits were defined as binary with 2 test-day SCC in a row above SCC thresholds from 50,000 to 400,000 cells/mL (SCM50, SCM100, SCM150, SCM200, SCM250, SCM300, SCM350, and SCM400), with 3 test-day SCC in a row above 200,000 and 400,000 cells/mL (SCM200_3 and SCM400_3), and the number of days before the first case with SCM50 (D50) or SCM400 (D400). The heritability and genetic correlations were estimated for SCM traits and the mean lactation-average somatic cell score (LSCS) using linear animal repeatability models. The total mean frequency of SCM ranged from 1.2% to 51.8%, for different trait definitions, high for low SCC threshold (SCM50) and low for the highest SCC threshold (SCM400_3). For the 2 traits based on number of days, the mean values were 104 (D50) and 117 (D400) days. The mean LSCS was 4.4 (equivalent to around 82,000 SCC). Heritabilities for the 12 alternative SCM traits were low and varied from 0.01 (SCM400_3) to 0.1 (SCM100), whereas for LSCS the estimated heritability was 0.3 and standard error varied from 0.001 to 0.003. Genetic correlations among the SCM traits ranged from 0.7 (D50 and SCM400) to 1 (SCM350 and SCM400), whereas between SCM traits and milk production the correlation ranged from 0.07 (LSCS) to 0.3 (D400). The standard error for genetic correlations varied from 0.001 to 0.06. The heritability was low and the genetic correlations were strong among SCM traits. Genetic correlations lower than 1 suggest that the alternative SCM traits are genetically different from LSCS, the trait currently used in genetic evaluations for Norwegian Red. Hence, the alternative traits will add information and improve breeding for better udder health.  相似文献   

12.
The aim of this study was to estimate genetic parameters for blood β-hydroxybutyrate (BHB) predicted from milk spectra and for clinical ketosis (KET), and to examine genetic association of blood BHB with KET and milk production traits (milk, fat, protein, and lactose yields, and milk fat, protein, and lactose contents). Data on milk traits, KET, and milk spectra were obtained from the Norwegian Dairy Herd Recording System with legal permission from TINE SA (Ås, Norway), the Norwegian Dairy Association that manages the central database. Data recorded up to 120 d after calving were considered. Blood BHB was predicted from milk spectra using a calibration model developed based on milk spectra and blood BHB measured in Polish dairy cows. The predicted blood BHB was grouped based on days in milk into 4 groups and each group was considered as a trait. The milk components for test-day milk samples were obtained by Fourier transform mid-infrared spectrometer with previously developed calibration equations from Foss (Hillerød, Denmark). Veterinarian-recorded KET data within 15 d before calving to 120 d after calving were used. Data were analyzed using univariate or bivariate linear animal models. Heritability estimates for predicted blood BHB at different stages of lactation were moderate, ranging from 0.250 to 0.365. Heritability estimate for KET from univariate analysis was 0.078, and the corresponding average estimate from bivariate analysis with BHB or milk production traits was 0.002. Genetic correlations between BHB traits were higher for adjacent lactation intervals and decreased as intervals were further apart. Predicted blood BHB at first test day was moderately genetically correlated with KET (0.469) and milk traits (ranged from ?0.367 with protein content to 0.277 with milk yield), except for milk fat content from across lactation stages that had near zero genetic correlation with BHB (0.033). These genetic correlations indicate that a lower BHB is genetically associated with higher milk protein and lactose contents, but with lower yields of milk, fat, protein, and lactose, and with lower frequency of KET. Estimates of genetic correlation of KET with milk production traits were from ?0.333 (with protein content) to 0.178 (with milk yield). Blood BHB can routinely be predicted from milk spectra analyzed from test-day milk samples, and thereby provides a practical alternative for selecting cows with lower susceptibility to ketosis, even though the correlations are moderate.  相似文献   

13.
The objective of this study was to apply reaction norm models to milk recording data to investigate genetic variation in and environmental sensitivity of susceptibility to milk fat depression (MFD). Data comprised 556,276 test-day records of 80,493 heifers in 1043 herds. Breeding values and genetic variances for fat percentage and fat yield were estimated by applying random regression models to average herd-test-day fat percentage. Genetic and permanent environmental correlations between fat yield expressed in different environments ranged, respectively, from 0.83 to 1.00 and from 0.29 to 1.00. Genetic and permanent environmental correlations between fat percentage expressed in different environments ranged, respectively, from 0.87 to 1.00 and from -0.05 to 0.99. Two traits were defined for MFD. The first trait reflected variation of milk fat percentage of animals within lactation after correction for year-season, herd-test-day, age-at-calving, and stage-of-lactation. This trait had an estimated heritability of about 5% and a genetic correlation between the fifth and 95th percentile of the data of 0.50. The second trait reflected the deviation of an animal's fat percentage on a test-day from its expected fat percentage based on fat percentage on the first test-day. This trait had an estimated heritability of about 4% and a genetic correlation between the fifth and 95th percentile of the data of 0.43. The correlation between estimated breeding values of sires for the 2 MFD traits was -0.3. Our results suggest that genetic variation in susceptibility to MFD is present and that selection for reduced susceptibility to MFD is possible.  相似文献   

14.
The aims of the study were to evaluate the relationships among milk urea nitrogen and nonreturn rates at the phenotypic scale, and to estimate genetic parameters among milk urea nitrogen, milk yield, and fertility traits in the early period of lactation. Milk yield, protein percentage, the interval from calving to first service, and 56- and 90-d nonreturn rates were available from 73,344 Holstein cows from 2,178 different herds located in a region in northwestern Germany. Generalized linear models with a logit link function were applied to assess the phenotypic relationships. Bivariate threshold-threshold, linear-threshold, and linear-linear models, fitted in a Bayesian framework, were used to estimate genetic correlations among traits. Milk yield, protein percentage, and milk urea nitrogen were means from test-day 1 (on average 20.8 d in milk) and test-day 2 (on average 53.1 d in milk) after calving. An increase in milk urea nitrogen was associated with decreasing 56-d nonreturn rates on the phenotypic scale. At fixed levels of milk urea nitrogen, greater values of protein percentage, indicating a surplus of energy in the feed, were positively associated with nonreturn rates. Heritabilities were 0.03 for 56- and 90-d nonreturn rates, 0.07 for interval from calving to first service, 0.13 for milk urea nitrogen, and 0.19 for milk yield. Service sire explained a negligible part (below 0.15%) of the total variance for nonreturn rates. Genetic correlations between the interval from calving to first service and nonreturn rates were close to zero. The genetic correlation between nonreturn rates was 0.94, suggesting that a change from nonreturn after 90 d to nonreturn after 56 d in the national genetic evaluation would not result in any loss of information. The genetic correlation between milk yield and nonreturn after 56 d was −0.31, and between milk yield and calving to first service was 0.14, both indicating an antagonistic relationship between production and reproduction. The genetic correlation between milk yield and milk urea nitrogen was 0.44, reflecting an energy deficiency in early lactation. The genetic correlations between milk urea nitrogen and nonreturn rates were too weak (−0.19 for 56-d nonreturn rate, and −0.23 for 90-d nonreturn rate) to justify the use of milk urea nitrogen as an additional trait in genetic selection for fertility, as demonstrated by selection index calculations.  相似文献   

15.
The objective of this research was to estimate genetic parameters of first-lactation body condition score (BCS), milk yield, fat percentage (Fat%), protein percentage (Prot%), somatic cell score (SCS), milk urea nitrogen (MUN), lactose percentage (Lact%), and fat to protein ratio (F:P) using multiple-trait random regression animal models. Changes in covariances between BCS and milk production traits on a daily basis have not been investigated before and could be useful for determining which BCS estimated breeding values (EBV) might be practical for selection in the future. Field staff from Valacta milk recording agency (Sainte-Anne-de-Bellevue, QC, Canada) collected BCS from Québec herds several times per cow throughout the lactation. Average daily heritabilities and genetic correlations among the various traits were similar to literature values. On an average daily basis, BCS was genetically unfavorably correlated with milk yield (i.e., increased milk yield was associated with lower body condition). The unfavorable genetic correlation between BCS and milk yield became stronger as lactation progressed, but was equivalent to zero for the first month of lactation. Favorable genetic correlations were found between BCS with Prot%, SCS, and Lact% (i.e., greater BCS was associated with greater Prot%, lower SCS, and greater Lact%). These correlations were strongest in early lactation. On an average daily basis, BCS was not genetically correlated with Fat% or MUN, but was negatively correlated with F:P. Furthermore, BCS at 5 and 50 d in milk (DIM) had the most favorable genetic correlations with milk production traits over the lactation (at 5, 50, 150, and 250 DIM). Thus, early lactation BCS EBV shows potential for selection. Regardless, this study showed that the level of association BCS has with milk production traits is not constant over the lactation. Simultaneous selection for both BCS and milk production traits should be considered, mainly due to the unfavorable genetic correlation between BCS with milk yield.  相似文献   

16.
The objective of this research was to evaluate heritabilities and genetic correlations among yield, fitness, and type traits for US Brown Swiss cattle born in 2000 and later. The data set used consisted of 108,633 first through fifth lactation records from 45,464 cows for yield, somatic cell score (SCS), days open, and productive life. Approximately half of the records had observations for 17 type traits and 41,074 had observations for milking speed. These data were analyzed using a series of 3 trait models. Heritability estimates of each trait were similar to previously reported values for both Holsteins, and Brown Swiss in other countries. Milk, fat, and protein yield had strong positive genetic correlations with productive life (0.67 to 0.71), whereas days open and SCS had strong negative correlations with productive life (?0.60 and ?0.69, respectively). Days open was more unfavorably correlated with dairy form (angularity) than with yield. The genetic correlation of udder depth and milk yield was unfavorable (?0.40), whereas rear udder height (0.20) and width (0.48) were favorably correlated with milk yield. Udder depth had a favorable genetic correlation with SCS (?0.26). Type traits with the strongest genetic correlations with productive life were fore udder attachment, mobility, and final score (0.44, 0.50, and 0.57, respectively). These updated genetic parameters will allow for improved genetic selection within the Brown Swiss breed.  相似文献   

17.
In a grass-based production system with seasonal calving, fertility is of major economic importance. A delay in conception due to poor fertility prolongs intercalving interval and causes a shift in calving pattern, which can lead to culling. Calving interval (CIV) information is readily available from milk records; analyzing it, however, presents a problem, as it is only available for cows that conceive and calve again. Calving interval should therefore be treated as a censored trait. In this study, survival to the next lactation (SUV) was analyzed jointly with CIV in a multivariate linear model to account for the selection in CIV data. Genetic parameters for first lactation calving interval were estimated with a sire model for Holstein Friesian cows in Ireland. SUV was preadjusted for production within herd-year-season (HYS), while milk yield was included as a third trait in the analysis to account for the large effect it has on both traits. The residual covariance between CIV and SUV was fixed as 3 times the sire covariance within the model, as it was inestimable because of the structure of the data. Breeding values were estimated with various models to test the effect of culling and milk yield. Heritability was 0.04 +/- 0.006 for CIV and 0.01 +/- 0.003 for SUV, while the genetic correlation between them was -0.28 (+/-0.11). The genetic standard deviation was around 4% for SUV and 7 d for CIV. Sire predicted transmitting abilities for progeny tested bulls ranged between -5 and 3% for survival rate and between -4 and 8 d for calving interval. Differences between the best and worst bull varied with model. Including SUV and milk yield as traits in the model reduced the mean and variance of sire predicted transmitting abilities but increased the coefficient of variation by 30% compared with the univariate model. The current model is expected to account for most of the genetic variation in fertility that is possible from calving dates and future extensions, such as the use of linear type trait or additional lactations for predicting survival, appear straightforward. These traits now form part of the national index for selecting dairy bulls in Ireland.  相似文献   

18.
Genetic parameters for milk, fat, and protein yield and persistency in the first 3 lactations of Polish Black and White cattle were estimated. A multiple-lactation model was applied with random herd-test-day effect, fixed regressions for herd-year and age-season of calving, and random regressions for the additive genetic and permanent environmental effects. Three data sets with slightly different edits on minimal number of days in milk and the size of herd-year class were used. Each subset included more than 0.5 million test-day records and more than 58,000 cows. Estimates of covariance components and genetic parameters for each trait were obtained by Bayesian methods using the Gibbs sampler. Due to the large size and a good structure of the data, no differences in estimates were found when additional criteria for record selection were applied. More than 95% of the genetic variance for all traits and lactations was explained by the first 2 principal components, which were associated with the mean yield and lactation persistency. Heritabilities of 305-d milk yield in the first 3 lactations (0.18, 0.16, 0.17) were lower than those for fat (0.12, 0.11, 0.12) and protein (0.13, 0.14, 0.15). Estimates of daily heritabilities increased in general with days in milk for all traits and lactations, with no apparent abnormalities at the beginning or end of lactation. Genetic correlations between yields in different lactations ranged from 0.74 (fat yield in lactations 1 and 3) to 0.89 (milk yield in lactations 2 and 3). Persistency of lactation was defined as the linear regression coefficient of the lactation curve. Heritability of persistency increased with lactation number for all traits and genetic correlations between persistency in different lactations were smaller than those for 305d yield. Persistency was not genetically correlated with the total yield in lactation.  相似文献   

19.
《Journal of dairy science》2019,102(8):7217-7225
The aim of the present study was to assess the relationships of lactose percentage (LP), lactose yield (LY), and freezing point (FRP) with minerals and coagulation properties predicted from mid-infrared spectra in bovine milk. To achieve this purpose, we analyzed 54,263 test-day records of 4,297 Holstein cows to compute (co)variance components with a linear repeatability animal model. Parity, stage of lactation, season of calving, and herd-test-date were included as fixed effects in the model, and additive genetic animal, within- and across-lactation permanent environment, and residual were included as random effects. Lactose percentage was more heritable (0.405 ± 0.027) than LY (0.121 ± 0.021) and FRP (0.132 ± 0.014). Heritabilities (± standard error) of predicted milk minerals varied from 0.375 ± 0.027 for Na to 0.531 ± 0.028 for P, and those of milk coagulation properties ranged from 0.348 ± 0.052 for rennet coagulation time to 0.430 ± 0.026 for curd firming time. Lactose percentage showed favorable (negative) genetic correlations with milk somatic cell score (SCS) and FRP, and it was almost uncorrelated with casein-related minerals (Ca and P) and coagulation properties. Moreover, LP was strongly correlated with Na (−0.783 ± 0.022), a mineral known to increase in the presence of intramammary infection (IMI) and high somatic cell count. Indeed, Na is the main osmotic replacer of lactose in mastitic milk when the blood–milk barrier is altered during IMI. Being strongly associated with milk yield, LY did not favorably correlate with coagulation properties, likely because of the negative correlation of this trait with protein and casein percentages. Milk FRP presented moderate and null genetic associations with Na and SCS, respectively. Results of the present study suggest that the moderate heritability of LP and its genetic correlations with IMI-related traits (Na and SCS) could be exploited for genetic selection against mastitis. Moreover, selection for LP would not impair milk coagulation characteristics or Ca and P content, which are important for cheesemaking.  相似文献   

20.
Many countries have pledged to reduce greenhouse gases. In this context, the dairy sector is one of the identified sectors to adapt production circumstances to address socio-environmental constraints due to its large carbon footprint related to CH4 emission. This study aimed mainly to estimate (1) the genetic parameters of 2 milk mid-infrared-based CH4 proxies [predicted daily CH4 emission (PME, g/d), and log-transformed predicted CH4 intensity (LMI)] and (2) their genetic correlations with milk production traits [milk (MY), fat (FY), and protein (PY) yields] from first- and second-parity Holstein cows. A total of 336,126 and 231,400 mid-infrared CH4 phenotypes were collected from 56,957 and 34,992 first- and second-parity cows, respectively. The PME increased from the first to the second lactation (433 vs. 453 g/d) and the LMI decreased (2.93 vs. 2.86). We used 20 bivariate random regression test-day models to estimate the variance components. Moderate heritability values were observed for both CH4 traits, and those values decreased slightly from the first to the second lactation (0.25 ± 0.01 and 0.22 ± 0.01 for PME; 0.18 ± 0.01 and 0.17 ± 0.02 for LMI). Lactation phenotypic and genetic correlations were negative between PME and MY in both first and second lactations (?0.07 vs. ?0.07 and ?0.19 vs. ?0.24, respectively). More close scrutiny revealed that relative increase of PME was lower with high MY levels even reverting to decrease, and therefore explaining the negative correlations, indicating that higher producing cows could be a mitigation option for CH4 emission. The PME phenotypic correlations were almost equal to 0 with FY and PY for both lactations. However, the genetic correlations between PME and FY were slightly positive (0.11 and 0.12), whereas with PY the correlations were slightly negative (?0.05 and ?0.04). Both phenotypic and genetic correlations between LMI and MY or PY or FY were always relatively highly negative (from ?0.21 to ?0.88). As the genetic correlations between PME and LMI were strong (0.71 and 0.72 in first and second lactation), the selection of one trait would also strongly influence the other trait. However, in animal breeding context, PME, as a direct quantity CH4 proxy, would be preferred to LMI, which is a ratio trait of PME with a trait already in the index. The range of PME sire estimated breeding values were 22.1 and 29.41 kg per lactation in first and second parity, respectively. Further studies must be conducted to evaluate the effect of the introduction of PME in a selection index on the other traits already included in this index, such as, for instance, fertility or longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号