首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Carbon nanotubes (CNTs) and the ones grown on MgO and alumina are used as supports for cobalt catalyst in Fischer–Tropsch (FT) synthesis. Carbon nanotubes were synthesized by chemical vapor deposition of methane on 5.0 wt.% iron on MgO or alumina at 950 °C. The carbon nanotubes were characterized by SEM and TEM microscopy and Raman spectroscopy. Cobalt nitrate was impregnated onto the supports by impregnation, and the samples were dried and reduced in-situ at 400 °C for 12 h, and then FT synthesis was carried out in a fixed-bed reactor. The catalysts were characterized by BET surface area measurement, TPR and TPD. The effect of carbon nanotubes as cobalt support on CO conversion, product selectivity, and olefin to paraffin ratio of FT synthesis was investigated and compared with activated carbon as well as Al2O3, as a traditional support. The results revealed that the activity of the Co/CNT catalyst was improved by 22%, compared to the conventional Co/alumina catalysts. Also the cobalt supported on CNTs grown on MgO (Co/CNT–MgO) shows the highest selectivity to C5+ as the most desired FTS products. The C5+ selectivity enhancement was about 37, 34, 17, and 77% as compared to the Co/CNT, Co/alumina, Co/CNTs-alumina, and Co/activated carbon, respectively. Also the olefin/paraffin ratio on the Co/CNTs-MgO catalyst is about 7.7 times higher than the conventional cobalt catalysts. It seems that the degree of reduction of cobalt is higher when supported on CNTs than on alumina. This leads to higher FTS activity. Also, the particle size distribution of the cobalt is affected by the CNT–MgO support leading to higher C5+ selectivity.  相似文献   

2.
The kinetics of carbon nanotube (CNT) synthesis by decomposition of CH4 over Mo/Co/MgO and Co/MgO catalysts was studied to clarify the role of catalyst component. In the absence of the Mo component, Co/MgO catalysts are active in the synthesis of thick CNT (outer diameter of 7-27 nm) at lower reaction temperatures, 823-923 K, but no CNTs of thin outer diameter are produced. Co/MgO catalysts are significantly deactivated by carbon deposition at temperatures above 923 K. For Mo-including catalysts (Mo/Co/MgO), thin CNT (2-5 walls) formation starts at above 1000 K without deactivation. The significant effects of the addition of Mo are ascribed to the reduction in catalytic activity for dissociation of CH4, as well as to the formation of Mo2C during CNT synthesis at high temperatures. On both Co/MgO and Mo/Co/MgO catalysts, the rate of CNT synthesis is proportional to the CH4 pressure, indicating that the dissociation of CH4 is the rate-determining step for a catalyst working without deactivation. The deactivation of catalysts by carbon deposition takes place kinetically when the formation rate of the graphene network is smaller than the carbon deposition rate by decomposition of CH4.  相似文献   

3.
Multi-wall carbon nanotubes (CNTs) were coated with protonated polyaniline (PAni) in situ during the chemical polymerization of aniline. Uniform coating of CNT with PAni was observed by scanning electronic microscopy. An improvement in the covering of CNT composites was found by the association of poly(2,5-dimercapto-1,3,4-thiadiazole) (PDMcT). The conductivity of composites has been compared with the conductivity of the PAni and CNT. A maximum conductivity of 96.8 S cm−1 has been found for a PAni/PDMcT/CNT composite. High capacitance value (289.4 F g−1) was also determined for this composite, indicating that all materials, PAni, PDMcT and CNT, remain active during the charge–discharge cycling. The reduction in the capacitance after 100 cycles was found to be less than 25%. The capacitive behavior of all materials was confirmed by impedance analysis.  相似文献   

4.
PtCo bimetallic and Co, Pt monometallic catalysts supported on γ-Al2O3, SiO2, TiO2 and activated carbon (AC) were prepared and evaluated for the hydrogenation of benzene at relatively low temperatures (343 K) and atmospheric pressure. Results from flow reactor studies showed that supports strongly affected the catalytic properties of different bimetallic catalysts. AC supported PtCo bimetallic catalysts exhibited significantly better performance than the other bimetallic catalysts, and all the bimetallic catalysts possessed higher activity than the corresponding monometallic catalysts. Results from CO chemisorption and H2-temperature-programmed reduction (H2-TPR) studies suggested that different catalysts possessed different properties in chemisorption capacity and reduction behavior, and AC supported PtCo catalysts possessed significantly higher CO chemisorption capacity compared to the other catalysts. Extended X-ray absorption fine structure (EXAFS) and transmission electron microscopy (TEM) analysis provided additional information regarding the formation of Pt–Co bimetallic bonds and metallic particle size distribution in the PtCo bimetallic catalysts on different supports.  相似文献   

5.
Aqueous ozone decomposition was studied over highly dispersed cobalt nanoparticles supported on olive stones activated carbon (AC) prepared by: wetness impregnation (Co/ACw) and incipient wetness impregnation (Co/ACiw) with respect to pore volume. Nitrogen adsorption-desorption at 77K, SEM, XRD and XPS analyses were used to characterize the catalysts. Analyses results show that Co/ACw was more uniformly dispersed on the AC than Co/ACiw. The effect of the presence of tert-butanol as radical scavenger was also studied. Higher catalytic activity was measured for Co/ACw than Co/ACiw. Ozone decomposition extent goes to 99% in only 3 min in the presence of Co/ACw compared to 60% and 58% using Co/ACiw catalyst and AC, respectively.  相似文献   

6.
After DC and AC conductivity measurements, percolation parameters, universality, and time‐temperature‐concentration superposition are evaluated in biocomposites based on poly(lactide) loaded with multiwalled carbon nanotubes either carboxylic, PLA/c‐CNT, or pure but with a larger aspect ratio, PLA/LAR‐CNT, in weight concentrations up to 7%. The polymer matrix is either 100% amorphous or cold‐crystallized. Wide angle X‐ray scattering is used to extract the crystallinity at each temperature. The nucleating effect for the cold crystallization of the PLA is greater for the LAR‐CNT than for the carboxylic ones. DC and AC conductivities are measured in broad frequency and temperature ranges, from 1 mHz to 1 MHz and from 133 to 378 K, respectively. The critical percolation value increases for c‐CNTs (from 1.8 to 2.4 vol%) upon cold crystallization of the PLA matrix as the formation of a conductive path is hindered by the existence of a crystalline phase, which is dominant over the reduction of the amorphous regions. No significant changes upon crystallization were found in the critical concentration value (0.6 vol%) for the LAR composites, where the conductive path is 2D. The universal scaling found here for different concentrations is lost when temperature varies. However, time‐temperature superposition is present for each concentration of LAR or carboxylic CNTs. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

7.
Low density polyethylene nanocomposites filled with carbon nanotubes (CNT) having three different aspect ratios have been prepared by melt mixing technique. The effects of CNT loading, its aspect ratio, and frequency of electric field on electrical and dielectric properties of the nanocomposites have been investigated. DC and AC electrical resistivity are found to decrease with the increase in CNT loading in the composites, while the dielectric constant and loss increase with the increase in CNT loading in the composites. AC electrical resistivity, dielectric constant, and dielectric loss decrease with the increase in frequency. Furthermore, the electrical resistivity decreases with the increase in aspect ratio of CNT, whereas the dielectric constant and loss increase with the increase in aspect ratio of CNT. While probable mechanisms for electrical conduction have been proposed, dielectric results have been explained by considering CNT as nanocapacitors. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
Ultrafine Mo–Co–K catalysts were prepared and tested for higher alcohol synthesis. The catalysts exhibited high catalytic activity. The effect of the mole ratio of cobalt and molybdenum in the catalysts upon the catalytic performance of higher alcohol synthesis was investigated. Among the ultrafine Mo–Co–K catalysts, the best one corresponded to the Co/Mo mole ratio of 1:7. The XPS spectra revealed that molybdenum was present in two species: Mo6+ and Mo4+ on the surface of reduced catalysts, and the Mo4+ species content depended strongly on the Co/Mo mole ratio. The selectivity towards higher alcohols was found to be related to the Mo4+ species content. A linear relation between the selectivity and Mo4+ species content led to the conclusion that the Mo4+ species was the main active species for higher alcohol synthesis over the ultrafine Mo–Co–K catalysts.  相似文献   

9.
Investigation of Ternary Catalysts for Methanol Electrooxidation   总被引:11,自引:0,他引:11  
The electrochemical oxidation of methanol was investigated on Pt–Ru–X ternary metallic catalysts (with X=Au, Co, Cu, Fe, Mo, Ni, Sn or W). The catalysts were prepared by electrochemical deposition and dispersed in a conductive three-dimensional matrix, an electronic conducting polymer, polyaniline (PAni). A comparative study of the behaviour of several ternary catalysts towards the electro-oxidation of methanol shows that PAni/Pt–Ru–Mo is the most efficient anode at potentials up to 500mV vs RHE. This latter ternary electrocatalyst leads to current densities up to 10 times higher than those measured with PAni/Pt–Ru in this potential range. Moreover, the catalyst appears to be stable for potentials lower than 550mV vs RHE. According to EDX analysis, the good behaviour of the Pt–Ru–Mo ternary catalyst seems to result from the presence of a small amount of the third metal, at an atomic ratio close to 5%. This set of encouraging results has also been confirmed by preliminary measurements in a single cell direct methanol fuel cell (DMFC) containing a home made PAni/Pt–Ru–Mo anode. The ternary catalyst leads to higher power densities than the PAni/Pt–Ru binary catalyst under the same experimental conditions.  相似文献   

10.
Catalytic decomposition of nitrous oxide into nitrogen and oxygen has been carried out on ‘in situ' thermally calcined hydrotalcites of general formula M(II)–M(III)-CHT where M(II)=Mg, Co, Ni, Cu or Zn and M(III)=Al, Fe or Cr having different M(II)/M(III) atomic ratios. The reaction was performed in a recirculatory static reactor at 50 Torr (133.3 Pa) initial pressure of N2O in the temperature range 423–773 K. Among the catalysts screened, Ni and Co containing catalysts with Al as the trivalent cation showed good activity (even at 423 K) wherein 50% and 100% conversion was achieved at 463 K and 523 K, respectively. Results on effect of composition for Co–Al system indicated that the activity increased with increase in the active metal ion concentration (Co2+), with closer dependence on the surface concentration (as determined by XPS). The observed activity pattern is explained on the basis of redox property and electronic effects. These materials were further evaluated under flow conditions (at Air Products and Chemicals, USA) simulating the industrial process streams (10% N2O, 2% H2O, 2% O2 and balance N2 and GHSV=18,500). Among the non-precious metal ions investigated, cobalt-based catalysts offered comparable activity similar to metal-exchanged zeolites for removing N2O from combustion and Nylon-6,6 processes.  相似文献   

11.
The optimized compositions K(4.9)/Co(2.7)/Mo(6.4)/A1203(gamma) and K(1.2)/ Rh(1.1)/Co(0.6)/Mo(5.7)/A1203(gamma) are both productive catalysts for higher alcohols. The incorporation of rhodium into the K/Co/Mo/A1203-system allows the space-time-yield for alcohols to be increased from 0.37 g alcohols (g catalyst)–1 h–1 to 1.1 g alcohols (g catalyst)–1 h–1. In addition, the higher productivity can be achieved with the rhodium-type catalyst at a lower reaction temperature (45°C lower), and so a higher selectivity to alcohols is observed. Potassium is a key promoter in both catalyst systems, and shifts the distribution of oxygenates towards higher alcohols. In IR measurements it is found that potassium stimulates bands for adsorbed CO around 1885 cm–. These bands are small for the K/Co/Mo/A1203 system, but are greatly stimulated by the incorporation of rhodium. It is suggested that these bands are indicative of the sites used to catalyze higher alcohols, thereby explaining the promotional effect of rhodium in the K/Co/Mo/A1203 catalyst system. Previous workers have suggested that the less-electron-rich sites (ionic) are important for methanol synthesis, while the more electron-rich sites (metallic) are important for higher alcohols and hydrocarbons synthesis. The IR measurements and reactivity data support these suggestions.  相似文献   

12.
Carbon nanotube (CNT) vertical interconnects (vias) were fabricated on conductive substrates at a record-low temperature of 350 °C, using only standard semiconductor manufacturing techniques and materials. CNT growth rates were investigated for both Co and a Co–Al alloy catalysts, and compared to that of Fe. The activation energy of the Co-based catalysts was found to be lower, allowing lower temperature growth. Using Co as catalyst full-wafer CNT test vias were fabricated at 350 °C, and 400 °C, and electrically characterized. Good uniformity was obtained, with no apparent yield-loss compared to higher temperature fabricated CNT vias. A negative thermal coefficient of resistance was observed of −800 ppm/K, which is advantageous for interconnect applications. The resistivity of the vias increases with temperature, up to 139  cm for 350 °C, but was found to be lower than several values obtained from literature of CNT vias fabricated at higher temperatures.  相似文献   

13.
A series of carbon nanotube (CNT)-supported copper–cobalt–cerium catalysts were prepared and investigated for higher alcohols synthesis. The superior selectivity for the formation of ethanol and C2 + alcohols achieved using the CuCoCe/CNT(8) catalyst was 39.0% and 67.9%, respectively. The diameters of CNTs considerably influence the distribution of metal particles and the electronic interaction between the tube surface and the active species. The electronic effect between the encapsulated Co species and the inner surface is greatly improved in the narrowest CNT channel, which is expected to facilitate the reduction of cobaltous oxide and promote the alcohols yield remarkably (291.9 mg/gcath).  相似文献   

14.
Modulated differential scanning calorimetry (MDSC) was used to measure the complex specific heat of the crystallization and melting transitions of nanocomposites of isotactic polypropylene (iPP) and carbon nanotubes (CNT) as function of CNT weight percent and temperature scan rate. In the last few years, great attention has been paid to the preparation of iPP/CNT nanocomposites due to their unique thermal and structural properties and potential applications. As the CNT content increases from 0 to 1 wt %, heterogeneous crystal nucleation scales with the CNT surface area. Above 1 wt %, nucleation appears to saturate with the crystallization temperature, reaching ~8 K above that of the neat polymer. Heating scans reveal a complex, two‐step, melting process with a small specific heat peak, first observed ~8 K below a much larger peak for the neat iPP. For iPP/CNT samples, these two features rapidly shift to higher temperatures with increasing ?w and then plateau at ~3 K above that in neat iPP for ?w ≥ 1 wt %. Scan rates affect dramatically differently the neat iPP and its nanocomposites. Transition temperatures shift nonlinearly, while the total transition enthalpy diverges between cooling and heating cycles with decreasing scan rates. These results are interpreted as the CNTs acting as nucleation sites for iPP crystal formation, randomly pinning a crystal structure different than in the neat iPP and indicating complex transition dynamics. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Catalytic performance of cobalt–magnesia catalyst prepared by oxalate co-precipitation method (Co–MgO) was investigated for dry reforming of methane at 1 MPa, 1023 K. Co–MgO (7 mol% Co) showed stable activity at such high space velocity as 400,000 cm3 h−1 g−1 whereas reactor was plugged during the reforming reaction with 10 mol% Co–MgO, and the activity of Co–MgO with Co content less than 6 mol% gradually decreased by the oxidation of cobalt species. Well-balanced cobalt content is essential for high and stable activity.  相似文献   

16.
采用四槽高压连续流动反应器研究了添加助剂Ba、K和Sm对活性炭负载钴催化剂氨合成活性的影响,结果发现,添加助剂Ba、K和Sm可以提高催化剂的氨合成活性,其中,Ba的促进效果最好,Ba与Co物质的量比为0.3时,催化活性最高。在Ba-Co/AC催化剂中,助剂Sm的加入降低了催化剂的氨合成活性,而少量K助剂(K与Co物质的量比为0.25~0.5)可以提高其催化性能,在10 MPa、10 000 h-1和450 ℃条件下,双助剂催化剂的氨合成活性可达120 mmol·(g·h)-1,进一步增加K的量,其氨合成活性下降。  相似文献   

17.
Lei Ni  Ling-Ping Zhou  Kiyoto Matsuishi 《Carbon》2009,47(13):3054-5387
The role of catalyst components in catalysts containing molybdenum, Mo/M/MgO (MNi, Co, and Fe), as well as Mo-free catalysts, M/MgO (MNi, Co, and Fe), for carbon nanotube (CNT) synthesis have been investigated by TEM, XRD, and Raman spectroscopy. CNT synthesis by the catalytic decomposition of CH4 over M/MgO catalysts can proceed at reaction temperatures higher than the decomposition temperature of the metal carbides (Ni3C, Co2C, and Fe3C), which indicates that carbon in the CNT originates from the graphitic carbon formed on the catalyst surface by the decomposition of metal carbides. For all catalysts containing Mo, thin CNT formation starts at an identical temperature of 923 K, corresponding to the decomposition temperature of MoC1−x into Mo2C. The significant effect of the addition of Mo is concerned with the formation of Mo2C in a catalyst particle during CNT synthesis at high reaction temperatures. The presence of a stable Mo2C phase leads to the formation of thin CNT with better crystallinity at high reaction temperatures. The role of Ni, Co, and Fe in the Mo/M/MgO catalysts is ascribed to the dissociation of CH4.  相似文献   

18.
As HDS catalysts, the supported catalysts including oxide state Mo, Co–Mo and sulfide state Mo on carbon nanotube (CNT) were prepared, while the corresponding supported catalysts on γ-Al2O3 were prepared as comparison. Firstly, the dispersion of the active phase and loading capacity of Mo species on CNT was studied by XRD and the reducibility properties of Co–Mo catalysts in oxide state over CNTs were investigated by TPR while the sulfide Co–Mo/CNT catalysts were characterized by XRD and LRS techniques. Secondly, the activity and selectivity of hydrodesulfurization (HDS) of dibenzothiophene with Co–Mo/CNT and Co–Mo/γ-Al2O3 were studied. It has been found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, rather than MoO3 as generally expected. The maximum loading before formation of the bulk phase was lower than 6%m (calculated in MoO3). The TPR studies revealed that that active species in oxide state Co–Mo/CNT catalysts were more easily reduced at relatively lower temperatures in comparison to those in Co–Mo/γ-Al2O3, indicating that the CNT support promoted the reduction of active species. Among 0–1.0 Co/Mo atomic ratio on Co–Mo/CNT, 0.7 has the highest reducibility. It shows that the Co/Mo atomic ratio has a great effect on the reducibility of active species on CNT and their HDS activities and that the incorporation of cobalt improved the dispersion of molybdenum species on CNT and mobilization. It was also found that re-dispersion could occur during the sulfiding process, resulting in low valence state Mo3S4 and Co–MoS2.17 active phases. The HDS of DBT showed that Co–Mo/CNT catalysts were more active than Co–Mo/γ-Al2O3 and the hydrogenolysis/hydrogenation selectivity of Co–Mo/CNT catalyst was also much higher than Co–Mo/γ-Al2O3. For the Co–Mo/CNT catalysis system, the catalyst with Co/Mo atomic ratio of 0.7 showed the highest activity, whereas, the catalyst with Co/Mo atomic ratio of 0.35 was of the highest selectivity.  相似文献   

19.
A vapor phase synthesis of diethyl carbonate (DEC) from carbon monoxide and ethyl nitrite (EN) was studied in a continuous flow micro fixed-bed reactor at atmospheric pressure. PdCl2–CuCl2/AC (activated carbon) catalyst exhibited better catalytic activity compared with other binary catalyst systems. The suitable Pd-loading is about 2.0 wt%, and some additives (LaCl3, CeCl3, PrCl3) are benefit for the DEC yield and selectivity. Influences of various reaction parameters on the DEC yield and selectivity were tested. The optimum reaction temperature lies in 378–388 K and the suitable gas hourly space velocity (GHSV) range is 2500–3000 h−1 considering both factors of DEC production and CO conversion. An optimum CO/C2H5ONO mole ratio exists for catalytic activity, which is about 1/1. The stability of PdCl2–CuCl2/AC catalyst and PdCl2–CuCl2–CeCl3/AC catalyst was also investigated. The possible reason of the deactivation behavior of catalysts was discussed with the help of XRD.  相似文献   

20.
The cobalt carbide (Co2C) species was formed in some activated carbon supported cobalt-based (Co/AC) catalysts during the activation of catalysts. It was found that the activity of Fischer–Tropsch reaction over Co-based catalysts decreased due to the formation of cobalt carbide species. Some promoters and pretreatment of activated carbon with steam could restrain the formation of cobalt carbide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号