首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Several guanosine analogues were synthesized in the pyrazolo[3,4-d]pyrimidine ring system with various substituents at the 3-position. The new analogues prepared here include the CH3 (2-amino-3-methyl-1-beta-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4 (5H)-one, 13a), the phenyl (2-amino-3-phenyl-1-beta-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4 (5H)-one, 13b), and the NH2 (3,6-diamino-1-beta-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)- one, 17) substituted derivatives. These new agents, as well as several other 3-substituted derivatives including H, Br, OCH3, COOH, and oxo, were evaluated for their ability to potentiate certain murine immune functions relative to the known active agent 5-amino-3-beta-D-ribofuranosylthiazolo[4,5-d]pyrimidine-2,7(3H,6H) -dione (4, 7-thia-8-oxoguanosine). The biological evaluation included the (1) ex vivo determination of increased natural killer cell function and (2) in vivo antiviral protection against a lethal challenge of Semliki Forest virus. The 3-unsubstituted (5a) and the 3-bromo (5c) derivatives were found to be the most active immunopotentiators in this series.  相似文献   

2.
Several 3,4,6-trisubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides were prepared and tested for their biological activity. High-temperature glycosylation of 3,6-dibromoallopurinol with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of BF3 X OEt2, followed by ammonolysis, provided 6-amino-3-bromo-1-beta-D-ribofuranosylpyrazolo-[3,4-d]pyrimidin-4(5H)-on e. Similar glycosylation of either 3-bromo-4(5H)-oxopyrazolo [3,4-d]pyrimidin-6-yl methyl sulfoxide or 6-amino-3-bromopyrazolo [3,4-d]pyrimidin-4(5H)-one, and subsequent ammonolysis, also gave 7a. The structural assignment of 7a was on the basis of spectral studies, as well as its conversion to the reported guanosine analogue 1d. Application of this glycosylation procedure to 6-(methylthio)-4(5H)-oxopyrazolo[3,4-d]pyrimidine-3-carboxamide gave the corresponding N-1 glycosyl derivative. Dethiation and debenzoylation of 16a provided an alternate route to the recently reported 3-carbamoylallopurinol ribonucleoside thus confirming the structural assignment of 16a and the nucleosides derived therefrom. Oxidation of 16a and subsequent ammonolysis afforded 6-amino-1-beta-D-ribofuranosyl-4(5H)-oxopyrazolo[3, 4-d]pyrimidine-3-carboxamide. Alkaline treatment of 15a gave 6-azacadeguomycin. Acetylation of 15a, followed by dehydration with phosgene, provided the versatile intermediate 6-amino-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-4(5H)-oxopyrazolo [3, 4-d]pyrimidine-3-carbonitrile. Deacetylation of 19 gave 6-amino-1-beta-D-ribofuranosyl-4(5H)-oxopyrazolo[3, 4-d]pyrimidine-3-carbonitrile. Reaction of 19 with H2S gave 6-amino-1-beta-D-ribofuranosyl-4(5H)-oxopyrazolo[3, 4-d]pyrimidine-3-thiocarboxamide. All of these compounds were tested in vitro against certain viruses and tumor cells. Among these compounds, the guanosine analogues 7a and 20a showed significant activity against measles in vitro and were found to exhibit moderate antitumor activity in vitro against L1210 and P388 leukemia. 6-Azacadeguomycin and all other compounds were inactive against the viruses and tumor cells tested in vitro.  相似文献   

3.
Benzothiazole side chains featured in zopolrestat (1a) and its congeners were incorporated into oxophthalazineacetic acid replacements, including indazole, pyridazinone, and pyridopyridazinone with a pendant acetic acid moiety. Potent aldose reductase inhibition activity among resulting compounds is as widespread as it is in the earlier zopolrestat series, thus lending further support to our hypothesis that there is a binding site on the aldose reductase enzyme with strong affinity for benzothiazoles. Representative new compounds 1-[(5,7-difluoro-2-benzothiazolyl)-methyl]-1H-indazoleacetic acid (62), [6-[[5-(trifluoromethyl)benzothiazol-2-yl]methyl]-8-oxo- 6H-pyrido[2,3-d]-pyridazin-5-yl]acetic acid (70), 3,4-dihydro-4-oxo-5,6-dimethyl-3-[(5,7-difluorobenzothiazol-2-yl) methyl]-1-pyridazineacetic acid (79), and 3,4-dihydro-4-oxo-5,6-cyclohexano-3-[[5-(trifluoromethyl) benzothiazol-2-yl]-methyl]-1-pyridazineacetic acid (82) are potent aldose reductase inhibitors with IC50s of 30, 2.1, 5, and 52.2 nM, respectively. The best of these compounds, 79 and 82, also inhibit accumulation of sorbitol in rat sciatic nerve in a model of diabetic complications, when administered orally at 10 mg/kg. The inhibition values are 76 and 61%, respectively. In addition to benzothiazole, we have examined its surrogates effective in potentiating aldose reductase inhibition activity, including benzoxazole and aryl[1,2,4]oxadiazole. Structure-activity relationships emerging from this program are also discussed.  相似文献   

4.
A series of novel 3,4-dihydro-4-oxothieno[2,3-d]pyrimidine-2-carboxylic acid derivatives has been prepared and tested for antiallergenic activity. Members of the series, including both carboxylic acid salts and esters, have been found to exhibit oral activity in the rat passive cutaneous anaphylaxis (PCA) test. Activity is optimized by H or CH3 substitution at the 5 position and lower alkyl groups at the 6 position. Ethyl 6-ethyl-3,4-dihydro-4-oxothieno-[2,3-d]pyrimidine-2-carboxylate and 3,4-dihydro-5-methyl-6-(2-methylpropyl)-4-oxothieno[2,3-d]pyrimidine-2-carboxylic acid dipotassium salt were the most potent of the esters and salts, respectively. Such compounds have been shown to have a duration of action of up to 4 h in the PCA test and to inhibit both histamine release from rat peritoneal mast cells in vitro and allergen-induced bronchospasm in the rat lung.  相似文献   

5.
目的研究(2H)-2-环己基-3,4-二氢吡咯[1,2-a]吡嗪-1-酮衍生物抗炎镇痛作用的构效关系。方法以2-吡咯甲酸甲酯为原料,经取代、环合,制备(2H)-2-环己基-3,4-二氢吡咯[1,2-a]吡嗪-1-酮(3);通过Friedel-Crafts酰基化反应,制得其6-酰基衍生物4a~4j。用小鼠测试了所合成化合物的抗炎和镇痛活性。结果与结论合成了10个未见文献报道的新化合物4a~4j,其结构经MS1、H-NMR分析确证。抗炎镇痛试验表明,有些化合物具有明显的抗炎和/或镇痛作用,其中化合物4d的活性与对照药布洛芬相当。  相似文献   

6.
Pirolo [3,4-e] [1,4]-diazepine derivatives: 5-(2'-naphtyl) (7-phenyl-) 2, 3, 6, 8-tetrahydro)-pirolo-[3,4-e] [1,4]-diazepine-6-thiox-8-(1H,7H)-one (PD) and 5-(2'-naphtyl) 7-p-chlorophenyl-(2, 3, 6, 8-tetrahydro)-pirolo-[3,4-e] [1,4]-diazepine-6-thiox-8-(1H, 7H)-one (PDC1) show distinct analgesic properties, but no marked antiinflammatory activity in vivo. In addition these compounds inhibit rat blood platelet aggregation in vivo, and produce contractions of the rat's pregnant uterus.  相似文献   

7.
The synthesis of several analogues of (8R)-3-(2-deoxy-beta-D-erythro- pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol (pentostatin, 1a) is described. Ring closure of 2-amino-1-(5-amino-1H-imidazol-4-yl)ethanone dihydrochloride (3) with triethyl orthoacetate or triethyl orthopropionate gave the C-5 methyl and ethyl ketoaglycons, 6,7-dihydro-5-methylimidazo[4,5-d][1,3]diazepin-8(3H)-one (4b) and 5-ethyl-6,7-dihydroimidazo[4,5-d][1,3]diazepin-8(3H)-one (4c), respectively. Stannic chloride catalyzed condensation of the pertrimethylsilyl derivatives of 4b and 4c with a protected glycosyl halide afforded anomeric mixtures of ketonucleosides 3-(2-deoxy-3,5-di-O-p-toluoyl-beta- and -alpha-D-erythro-pentofuranosyl)-6,7-dihydro-5-methylimidazo[4,5-d] [1,3]diazepin-8(3H)-one (5b and 6b) and 3-(2-deoxy-3,5-di-O-p-toluoyl)-beta- and -alpha-D-erythro-pentofuranosyl)-5-ethyl-6,7-dihydroimidazo[4,5-d]- [1,3]diazepin-8(3H)-one (5c and 6c), respectively. Subsequent separation of the anomers, followed by deprotection and reduction of 5b, 6b, and 5c, afforded the respective 8R and 8S isomers. Stannic chloride catalyzed condensation of pertrimethylsilyl ketoaglycon 4a with 2-(chloromethoxy)-1-(p-toluoyloxy) ethane to give ketonucleoside 6,7-dihydro-3-[[2-(p-toluoyloxy)ethoxy] methyl]imidazo[4,5-d][1,3]diazepin-8(3H)-one (9a) was followed by deprotection to 6,7-dihydro-3[(2-hydroxyethoxy)methyl]imidazo[4,5-d][1,3] diazepin-8(3H)-one (9b) and then reduction to the racemic acyclic pentostatin analogue (+/-)-3,6,7,8-tetrahydro-3-[ (2-hydroxyethoxy)methyl]imidazo[4,5-d][1,3]diazepin-8-ol (2). Ki values for the in vitro adenosine deaminase (EC 3.5.4.4; type I; calf intestinal mucosa) inhibitory activities of 1b, 1c, and 2 were determined to be 1.6 X 10(-8), 1.5 X 10(-6), and 9.8 X 10(-8) M, respectively. When compounds 2 and 9b were tested in combination with vidarabine against herpes simplex virus, type 1, in an HEp-2 plaque reduction assay, only compound 2 was able to potentiate the antiviral activity of vidarabine.  相似文献   

8.
Pyrazolo[3,4-d]pyrimidines are pyrazolo analogues of purines. They have been shown to be a general class of compounds which exhibit A1 adenosine receptor affinity. Two series of pyrazolo[3,4-d]pyrimidine analogues of 1-methylisoguanosine have been synthesized. The first involved substitution of the N1-position while the second involved substitution of the N5-position. Both alkyl and aryl substituents were examined. All compounds were tested for A1 adenosine receptor affinity by using a (R)-[3H]-N6-(phenylisopropyl)adenosine binding assay. The 3-chlorophenyl group showed the greatest activity in the N1-position and the butyl group produced the greatest activity in the N5-position. Combination of the best substituent in each of these positions enhanced the overall activity. The most potent compound was 4-amino-5-N-butyl-1-(3-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-6(5H)- one with an IC50 of 6.4 x 10(-6) M. Selectivity at the receptor subclasses was examined by performing an A2 adenosine receptor affinity assay with [3H]CGS 21680. This series of compounds were slightly less potent at A2 receptors. 4-Amino-5-N-butyl-1-(3-chlorophenyl-1H-pyrazolo[3,4-d]pyrimidin-6(5H)-one was the most potent compound with an IC50 of 19.2 x 10(-6) M.  相似文献   

9.
A series of 7,12-dihydropyrimido[1',2';1,2]pyrido[3,4-b]indol-4(6H)-ones was prepared by Fischer indolization of 9-arylhydrazono-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one s. Quantumchemical calculations (ab initio and AM1) indicate that position 3 of 7,12-dihydro-pyrimido[1',2';1,2]pyrido[3,4-b]indol-4(6H)-one can be involved in electrophilic substitutions, while position 2 is sensitive towards nucleophilic attack. Bromination of 6-methyl-7,12-dihydropyrimido[1',2';1,2]pyrido[3,4-b]indol-4(6H)-o ne (16) with bromine afforded 3-bromo derivative (25), which was reacted with cyclic amines to give 2-amino-7,12-dihydro-pyrimido[1',2';1,2]pyrido[3,4-b]indol-4(6H)-ones (26-30) in an addition-elimination reaction. Vielsmeier-Haack formylation of compound (16) give 12-formyl (31) and 3,12-diformyl (32) derivatives (an N-formyl-1-aza derivative of nauclefidine alkaloid (34) at 60 degrees C and 100 degrees C, respectively. 3,12-dformyl compound (32) was oxidized to 3-carboxyl derivative (33). The quaternary salt (35), obtained from compound (16) with dimethyl sulphate, suffered a ring opening on the action of aqueous sodium hydroxide. The new compounds have been characterized by elemental analyses uv, 1H nmr and in some cases by 13C ruler, CD spectra and X-ray investigations.  相似文献   

10.
In this study, we report the synthesis and antimicrobial evaluation of several new thiazolo[4,5-d]pyrimidine derivatives, namely 7-substituted amino-5-methyl-3-phenylthiazolo[4,5-d]pyrimidine-2(3H)-thiones 4a-e, 8, 13, 15, ethyl 2-cyano-2-(7-substituted-5-methyl-3-phenylthiazolo [4,5-d]-pyrimidin-2(3H)-ylidene)acetates 5a-b, 2-(7-substituted-5-methyl-3-phenylthiazolo[4,5-d]pyrimidin-2(3H)-ylidene)malononitriles 6a-b, 5-methyl-7-morpholino-3-phenylthiazolo[4,5-d] pyrimidine-2(3H)-one 7, and 7-[4-(1-substituted-5-phenyl-4,5-dihydro-1H-pyrazolin-3-yl)anilino]-5-methyl-3-phenylthiazolo[4,5-d]pyrimidine-2(3H)-thiones 10-12. Some of the tested compounds were more active against C. albicans than E. coil and P. aeruginosa, and all were inactive against S. aureus.  相似文献   

11.
In this study, by starting from ethyl 4-amino-2,3-dihydro-3-phenyl-2-thioxothiazole-5-carboxylate (1), three compounds having 2,3-dihydro-3-phenyl-5-mercapto-6-alkyl/phenyl-2-thioxothiazolo[4,5- d]pyrimidin-7(6H)-one (2a-c) structure and their 5-(4'-nonsubstituted/-substituted benzoylmethyl)thio derivatives (3a-l) were synthesized. The antimicrobial activities of the synthesized compounds were investigated against some bacteria and fungi using the microdilution method. 2,3-Dihydro-3,6-diphenyl-5-(4'-bromobenzoylmethyl)thio-2-thioxothiazolo [4,5-d]pyrimidin-7(6H) one (3k) possessing remarkable activity against Gram-positive bacteria and yeast like fungi was found to be the most active compound in this series.  相似文献   

12.
Condensation of diethyl 2-amino-6-methylpyridine-3,4-dicarboxylate (I) with the corresponding isothiocyanates afforded derivatives of ethyl 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrido [2,3-d]pyrimidine-5-carboxylate (V-VII). Alkylation of (V), (VI) and (XI) gave the corresponding derivatives of ethyl 2-alkylthio-4-oxo-3,4-(and 1,4)-dihydropyrido[2,3-d]pyrimidine-5- and -6- carboxylate [(XII-XVI), (XX-XXII)]. Some of the obtained compounds were active pharmacologically.  相似文献   

13.
2-Amino-5-acetyl-4-methyl-thiophene-3-carboxylic acid ethyl ester (1) and 5-acetyl-2-amino-4-methylthiophene-3-carbohydrazide (2) were synthesized and used as starting materials for the synthesis of new series of 1-(5-amino-4-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-3-methylthiophen-2-yl) ethanone (3a), 1-(5-amino-4-(4-chloro-3,5-dimethyl-1H-pyrazole-1-carbonyl)-3-methylthiophen-2-yl) ethanone (3b), 1-(4-methyl-2-amino-5-acetylthiophene-3-carbonyl)pyrazolidine-3,5-dione (4), (Z)-N'-(4-methyl-2-amino-5-acetylthiophene-3-carbonyl) formohydrazonic acid (5a), (Z)-ethyl-N'-4-methyl-2-amino-5-acetylthiophene-3-carbonylformo hydrazonate (5b), 6-acetyl-3-amino-2,5-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (8), 5-methyl-3-amino-2-mercapto-6-acetylthieno [2,3-d]pyrimidin-4(3H)-one (10) and 5-methyl-6-acetyl-2-thioxo-2,3-dihydrothieno[2,3-d]pyrimidin-4(1H)-one (12) as potential antioxidant and antitumor agents. Pharmacological tests showed that compounds 6a, 6b, 8, 10 and 12 exhibited significant antitumor and antioxidant activity.  相似文献   

14.
3-Acetylcoumarin (1) was utilized as a key intermediate for the synthesis of 2-aminothiazole derivative 3 via bromination of 1 to afford acetylbromide 2 followed by treatment with thiourea or via Biginelli reaction of 1. Treatment of 3 with 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde, 2-methyl-4H-benzo[d][1,3]oxazin-4-one, furo[3,4-b]pyrazine-5,7-dione or 2-methyl-5,6,7,8-tetrahydro-4H-benzothieno[2,3-d][1,3]oxazin-4-one afforded diazine derivatives 4-7. Also, pyridopyrimidine 8 was obtained via a one pot reaction of 6-aminothiouracil, p-chlorobenzaldehyde and 3-acetylcoumarin. Moreover, refluxing of 6-aminothiouracil with one equivalent amount of 2 afforded the thiazolopyrimidine 9, while the pyrrolothiazolopyrimidine 10 was revealed when two equivalent amounts of 2 was used. Furthermore, treatment of enamine 11 with 2-aminobenzothiazole or 6-aminothiouracil afforded the pyrimidine derivatives 12 and 13, respectively. Transamination of enamine 11 with m-anisidine followed by cyclization of the resulting enaminone 14 gave the desired quinoline 15. Also, treatment of 11 with thiophenol in dioxane gave the mercapto derivative 16. Moreover, coupling of 11 with 4,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-3-yl-diazonium chloride, followed by complete cyclization of the resulting product afforded the pyridopyrazolothiazine 19 via the intermediate 18. Furthermore, the pyrazolopyrimidine 20 was revealed via a one pot condensation of 11, 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one and ammonium acetate. The thiadiazine derivatives 21-23 were obtained via treatment of 2 with the corresponding o-aminothiols. Desulphonation of 23 afforded the pyrazolotriazine 24. Finally, reaction of 2 with 2-hydroxybenzaldehyde gave benzofuran derivative 25. Representative compounds of the synthesized products were evaluated as antioxidant agents.  相似文献   

15.
The title nucleoside 5 was prepared by a condensation of the silylated heterocycle thieno[2,3-d]pyrimidin-4-one (1) with 1-O-acetyl-2,3,5-tri-O-benzoyl-beta-D-ribofuranose (2a) in the presence of a Lewis acid or with 2,3,5-tri-O-acetyl-D-ribofuranosyl bromide (2b) in the presence of mercuric oxide and mercuric bromide. The site of ribosylation and anomeric configuration of this nucleoside were established by 1H NMR. The synthesis of 3-beta-D-ribofuranosylpyrrolo[2,3-d]pyrimidin-4-one (8), 1-phenyl-5-beta-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4-one (9), 5-methyl-3-beta-D-ribofuranosylthieno[2,3-d]pyrimidin-4-one (10), and 2-methyl-6-beta-D-ribofuranosyltriazolo[5,4-d]pyrimidin-7-one (11) is also described. The title compound inhibited the growth of murine L-1210 leukemic cells in vitro with an ID50 of 3 X 10(-5)M. The growth inhibition could not be prevented by uridine, cytidine, thymidine, deoxycytidine, cytosine, hypoxanthine, or uridine and hypoxanthine together. On the other hand, inhibition of adenosine kinase by 10(-7) M 5-iodotubercidin prevented the cytotoxic effect. Also a subline of L-1210 cells resistant to several cytotoxic adenosine analogues was also resistant to this nucleoside. Thus it appears that this compound 5 may act as an adenosine analogue.  相似文献   

16.
Derivatives of the 2'-deoxynucleoside of furo[2,3-d]pyrimidin-2(3H)-one with long-chain alkyl (or 4-alkylphenyl) substituents at C6 exhibit remarkable anti-VZV (varicella-zoster virus) potency and selectivity, and analogous 2',3'-dideoxynucleoside derivatives show anti-HCMV (human cytomegalovirus) activity. We now report a synthetic approach that enables the preparation of long-chain 6-(alkyn-1-yl)furo[2,3-d]pyrimidin-2(3H)-ones in which the rodlike acetylene spacer replaces the 4-substituted-phenyl ring at C6. Analogues with methyl, beta-d-ribofuranosyl, beta-d-arabinofuranosyl, and 2-deoxy-beta-d-erythro-pentofuranosyl substituents at N3 have been prepared. Long-chain derivatives at C6 in the 2'-deoxynucleoside series showed virus-encoded nucleoside kinase-sensitive anti-VZV activity. Surprisingly, 3-methyl-6-(octyn-1-yl)furo[2,3-d]pyrimidin-2(3H)-one (prepared as a negative anti-VZV test control) exhibited anti-HCMV activity, which supports the possibility of development of non-nucleoside anti-HCMV agents originating from uncomplicated derivatives of such bicyclic ring systems.  相似文献   

17.
As a further development of our large program focused on the medicinal chemistry of translocator protein [TSPO (18 kDa)] ligands, a new class of compounds related to alpidem has been designed using SSR180575, emapunil, and previously published pyrrolo[3,4-b]quinoline derivatives 9 as templates. The designed compounds were synthesized by alkylation of the easily accessible 4-methyl-2-phenyl-1H-pyrazolo[3,4-b]quinolin-3(2H)-one derivatives 13-15 with the required bromoacetamides. Along with the expected 2-(4-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazolo[3,4-b]quinolin-1-yl)acetamide derivatives 10, 2-(4-methyl-3-oxo-2-phenyl-2H-pyrazolo[3,4-b]quinolin-9(3H)-yl)acetamide isomers 11 were isolated and characterized. The high TSPO affinity shown by new pyrazolo[3,4-b]quinoline derivatives 10 and especially 11 leads the way to further expand the chemical diversity in TSPO ligands and provides new templates and structure-affinity relationship data potentially useful in the design of new anxiolytic and neuroprotective agents.  相似文献   

18.
In the reaction of 4-phenyl-1,2,4-triazolin-5-one [Ia] and 3,4-diphenyl-1,2,4-triazolin-5-one [Ib] with 1-chloro-2,3-epoksypropane, the respective derivatives of 1-(2,3-epoksypropane)-4-phenyl-1,2,4-triazolin-5-one [IIa] and 1-(2,3-epoksypropane)-3,4-diphenyl-1,2,4-triazolin-5-one [IIb] were obtained. Then these compounds were converted into the corresponding aminoalkanol derivatives of 1,2,4-triazolin-5-one [IIIa, b-VIIIa, b] in reaction with secondary amines. The new compounds affected significantly the central nervous system of mice.  相似文献   

19.
4,6-Dimethyl-1H-pyrazolo[3,4-b]pyridine-3-amine (1) was used as a key intermediate for the synthesis of imidazolopyrazole derivatives 7-11 upon interaction with 3-(2-bromoacetyl)-2H-chromen-2-one (2), 2-(benzothiazol-2-yl)-4-chloro-3-oxobutanenitrile (3), 2,3-dibromonaphthalene-1,4-dione (4), naphtha[2,3-b]oxirene-2,7-dione (5), 2,5-dichloro-3,6-dihydroxyhexa-2,5-diene-1,4-dione (6), respectively. Acetylation of 11 afforded the bis-acetyl 12. Also, the imidazolopyrimidine 15 was prepared via treatment of 1 with sodium 3,4-dioxo-3,4-dihydronaphthalene-1-sulfonate (13) in DMF followed by cyclization of the bis-pyrazolopyrimidine 14 with glacial acetic acid. On the other hand, compound 1 was reacted with (E)-1-(4-methoxyphenyl)-5-(piperidin-1-yl)pent-1-en-3-one hydrochloride (16), 2-hydroxy-3-((piperidin-1-yl)-methyl)-naphthalene-1,4-dione (17), 2-styryl-2H-indene-1,3-dione (18), enaminone 22, chloroquinoline-3-carbaldehyde 27a, chloroquinoline-(6-methyl)-3-carbaldehyde 27b and 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (28) to afford pyrazolo[3,4-a]pyrimidines 19-21, 23, 29a, 29b and 30, respectively. Also, the pyrazolopyrimidinone 33 was obtained via treatment of 1 with 1-cyanoacetyl-3,5-dimethylpyrazole (31) followed by cyclization of the formed intermediate 32 with glacial acetic acid. Finally, treatment of 1 with o-terephthalaldehyde in glacial acetic acid afforded diazepine 34. The newly synthesized compounds were screened for their antioxidant properties in which some of them exhibited promising activities. Compounds 1, 14, 15, 23, 26, 29a, 30 and 32 have the ability to protect DNA from the damage induced by bleomycin.  相似文献   

20.
A series of thieno[1,3]oxazin-4-ones and thieno[1,3]thiazin-4-ones were synthesized and investigated as inhibitors of the alpha/beta hydrolases cholesterol esterase (CEase) and acetylcholinesterase (AChE). The introduction of a cycloaliphatic five- or six-membered ring fused at the thiophene was favorable for CEase inhibition. Such compounds were analyzed as true alternate substrate inhibitors. 6,7-Dihydro-2-(dimethylamino)-4H,5H-cyclopenta[4,5]thieno[2,3-d][1,3]oxazin-4-one (33) exhibited a K(i) value of 630 nM and excelled in its low susceptibility to CEase-catalyzed degradation. Compound 33 and its analogues did not inhibit AChE. The introduction of a tetrahydropyrido ring with bulky hydrophobic substituents at the basic nitrogen provided inhibitors of AChE which were completely inactive toward CEase. 7-Benzyl-5,6,7,8-tetrahydro-2-(N-3,4-dimethoxybenzyl-N-methylamino)-4H-pyrido[4',3':4,5]thieno[2,3-d][1,3]oxazin-4-one (21) had the IC(50) value of 330 nM for AChE inhibition. A residual enzymatic activity at an infinite inhibitor concentration and thus a catalytically active ternary enzyme-substrate-inhibitor complex was concluded. To specify kinetic parameters of inhibition, a new method was derived to characterize selected thieno[1,3]oxazin-4-ones as hyperbolic mixed-type inhibitors of AChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号