首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this paper, we consider a three-hop relay system based on interference cancellation technique in Underlay cognitive radio (CR) network. Although underlay CR has been shown as a promising technique to better utilize the source of primary users (PUs), its secondary performance will be severely degraded. On one hand, by adapting the Underlay spectrum sharing pattern, secondary users (SUs) would observe the strict power constraints and be interfered by primary users. On the other hand, limited transmit power results in limited transmission range, which greatly degrade the secondary transmission capacity. To solve the problems above, we propose an interference cancellation protocol for multi-hop wireless communication networks in underlay CR, which could develop the long-distance transmission performance and improve the transmission efficiency significantly. As simulation results shows, proposed scheme significantly reduce the secondary outage probability and increase the secondary diversity than the traditional cases.  相似文献   

2.
With the rapid development of wireless communication technology, the spectrum resources are increasingly strained which needs optimal solutions. Cognitive radio (CR) is one of the key technologies to solve this problem. Spectrum sensing not only includes the precise detection of the communication signal of the primary user (PU), but also the precise identification of its modulation type, which can then determine the a priori information such as the PU’ service category, so as to use this information to make the cognitive user (CU) aware to discover and use the idle spectrum more effectively, and improve the spectrum utilization. Spectrum sensing is the primary feature and core part of CR. Classical sensing algorithms includes energy detection, cyclostationary feature detection, matched filter detection, and so on. The energy detection algorithm has a simple structure and does not require prior knowledge of the PU transmitter signal, but it is easily affected by noise and the threshold is not easy to determine. The combination of multiple-input multiple-output (MIMO) with CR improves the spectral efficiency and multi-path fading utilization. To best utilize the PU spectrum while minimizing the overall transmit power, an iterative technique based on semidefinite programming (SDP) and minimum mean squared error (MMSE) is proposed. Also, this article proposed a new method for max-min fairness beamforming. When compared to existing algorithms, the simulation results show that the proposed algorithms perform better in terms of total transmitted power and signal-to-interference plus noise ratio (SINR). Furthermore, the proposed algorithm effectively improved the system performance in terms of number of iterations, interference temperature threshold and balance SINR level which makes it superior over the conventional schemes.  相似文献   

3.
Non-orthogonal multiple access (NOMA) is one of the key 5G technology which can improve spectrum efficiency and increase the number of user connections by utilizing the resources in a non-orthogonal manner. NOMA allows multiple terminals to share the same resource unit at the same time. The receiver usually needs to configure successive interference cancellation (SIC). The receiver eliminates co-channel interference (CCI) between users and it can significantly improve the system throughput. In order to meet the demands of users and improve fairness among them, this paper proposes a new power allocation scheme. The objective is to maximize user fairness by deploying the least fairness in multiplexed users. However, the objective function obtained is non-convex which is converted into convex form by utilizing the optimal Karush-Kuhn-Tucker (KKT) constraints. Simulation results show that the proposed power allocation scheme gives better performance than the existing schemes which indicates the effectiveness of the proposed scheme.  相似文献   

4.
The demand for mobile uplink traffic has increased significantly in the past few decades with the development of the Internet of Things (IoT) and mobile Internet. This has subsequently imposed challenges on 5G networks to provide high spectral efficiency and low-power massive connectivity. Non-orthogonal multiple access (NOMA) is a viable alternative to the current state-of-the-art orthogonal multiple access (OMA) techniques to address the challenges in 5G systems. In addition, a power control (PC) mechanism to mitigate the effect of interference between users can be accommodated to improve network performance. In this paper, we discuss the basic principles, key features, and strengths/weaknesses of the various power domain NOMA schemes. Moreover, we propose an uplink PC scheme for the users of a power domain NOMA network. The proposed PC method makes use of the evolutionary game theory (EGT) model to adaptively adjust the transmitted power level of the users which helps in mitigating user interference. A successive interference cancellation (SIC) receiver is applied at a base station (BS) in order to separate the users’ signals. By performing simulations, we show that the proposed EGT-based PC scheme achieves higher network efficiency, spectral efficiency, and energy efficiency.  相似文献   

5.
A cognitive radio network (CRN) intelligently utilizes the available spectral resources by sensing and learning from the radio environment to maximize spectrum utilization. In CRNs, the secondary users (SUs) opportunistically access the primary users (PUs) spectrum. Therefore, unambiguous detection of the PU channel occupancy is the most critical aspect of the operations of CRNs. Cooperative spectrum sensing (CSS) is rated as the best choice for making reliable sensing decisions. This paper employs machine-learning tools to sense the PU channels reliably in CSS. The sensing parameters are reconfigured to maximize the spectrum utilization while reducing sensing error and cost with improved channel throughput. The fine-k-nearest neighbor algorithm (FKNN), employed in this paper, estimates the number of samples based on the nature of the channel under-specific detection and false alarm probability demands. The simulation results reveal that the sensing cost is suppressed by reducing the sensing time and exploiting the traditional fusion rules, validating the effectiveness of the proposed scheme. Furthermore, the global decision made at the fusion center (FC) based on the modified sensing samples, results low energy consumption, higher throughput, and improved detection with low error probabilities.  相似文献   

6.
In this paper, we propose a downlink cognitive non-orthogonal multiple access (NOMA) network, where the secondary users (SUs) operate in underlay mode. In the network, secondary transmitter employs NOMA signaling for downlink transmission, and the primary user (PU) is interfered by the transmission from SU. The expressions for the outage probabilities are derived in closed-form for both primary and secondary users in the presence of channel estimation error. Numerical simulation results show that the channel estimation error and the inter-network interference cause degradation of the downlink outage performance. Also the power allocation and the location have a significant impact on the outage probability. The numerical experiments demonstrate that the analytic expressions of the outage probabilities match with the simulation results.  相似文献   

7.
In this paper, we investigate the performance of secondary transmission scheme based on Markov ON-OFF state of primary users in Underlay cognitive radio networks. We propose flexible secondary cooperative transmission schemewith interference cancellation technique according to the ON-OFF status of primary transmitter. For maximal ratio combining (MRC) at destination, we have derived exact closed-form expressions of the outage probability in different situations. The numerical simulation results also reveal that the proposed scheme improve the secondary transmission performance compared with traditional mechanism in terms of secondary outage probability and energy efficiency.  相似文献   

8.
Spectrum resources are the precious and limited natural resources. In order to improve the utilization of spectrum resources and maximize the network throughput, this paper studies the resource allocation of the downlink cognitive radio network with non-orthogonal multiple access (CRN-NOMA). NOMA, as the key technology of the fifth-generation communication (5G), can effectively increase the capacity of 5G networks. The optimization problem proposed in this paper aims to maximize the number of secondary users (SUs) accessing the system and the total throughput in the CRN-NOMA. Under the constraints of total power, minimum rate, interference and SINR, CRN-NOMA throughput is maximized by allocating optimal transmission power. First, for the situation of multiple sub-users, an adaptive optimization method is proposed to reduce the complexity of the optimization solution. Secondly, for the optimization problem of nonlinear programming, a maximization throughput optimization algorithm based on Chebyshev and convex (MTCC) for CRN-NOMA is proposed, which converts multi-objective optimization problem into single-objective optimization problem to solve. At the same time, the convergence and time complexity of the algorithm are verified. Theoretical analysis and simulation results show that the algorithm can effectively improve the system throughput. In terms of interference and throughput, the performance of the sub-optimal solution is better than that of orthogonal-frequency-division-multiple-access (OFDMA). This paper provides important insights for the research and application of NOMA in future communications.  相似文献   

9.
Resource allocation in wireless ad hoc networks is usually modelled in a non-cooperative game theoretic framework with the objective of maximising individual utility. However, the selfishness of autonomous users under such framework may lead to throughput unfairness which only benefits certain users. To alleviate this unfairness problem, the authors propose a payment-based power control scheme using game theory where each user announces a set of price coefficients that reflects different compensations paid by other users for the interference they produce. Users who generate higher interference are required to pay more by transmitting at a lower power to give other users a fairer chance of sharing the throughput.Without any incentive to play fairly, users could misbehave by broadcasting high price coefficients to force other users to transmit at a lower power. The authors treat this problem casting it into a price game which resembles a Prisoner's Dilemma game. Users who play this game iteratively will behave cooperatively and broadcast the price coefficients truthfully. Together with analytical proof, the proposed approach is shown to converge to Nash equilibrium where at this point it is able to provide a fairer throughput share among users at the expense of a slight loss in total throughput.  相似文献   

10.
Millimeter-wave communications are suitable for application to massive multiple-input multiple-output systems in order to satisfy the ever-growing data traffic demands of the next-generation wireless communication. However, their practical deployment is hindered by the high cost of complex hardware, such as radio frequency (RF) chains. To this end, operation in the beamspace domain, through beam selection, is a viable solution. Generally, the conventional beam selection schemes focus on the feedback and exhaustive search techniques. In addition, since the same beam in the beamspace may be assigned to a different user, conventional beam selection schemes suffer serious multi-user interference. In addition, some RF chains may be wasted, since they do not contribute to the sum-rate performance. Thus, a fingerprint-based beam selection scheme is proposed to solve these problems. The proposed scheme conducts offline group-based fingerprint database construction and online beam selection to mitigate multi-user interference. In the offline phase, the contributing users with the same best beam are grouped. After grouping, a fingerprint database is created for each group. In the online phase, beam selection is performed for purposes of interference mitigation using the information contained in the group-based fingerprint database. The simulation results confirm that the proposed beam selection scheme can achieve a signal-to-interference-plus-noise ratio and sum-rate performance which is close to those of a fully digital system, and having much higher energy efficiency.  相似文献   

11.
Future wireless networks demand high spectral efficiency, energy efficiency and reliability. Cooperative non-orthogonal multiple access (NOMA) with simultaneous wireless information and power transfer (SWIPT) is considered as one of the novel techniques to meet this demand. In this work, an adaptive power allocation scheme called SWIPT based adaptive power allocation (SWIPT-APA-NOMA) is proposed for a power domain NOMA network. The proposed scheme considers the receiver sensitivity of the end users while calculating the power allocation coefficients in order to prevent wastage of power allocated to user in outage and by offering priority to any one of the users to use maximum harvested power. A detailed analysis on the bit error rate (BER) performance of the proposed scheme is done and closed form expression is obtained. Simulations have been carried out with various parameters that influence the receiver sensitivity and the results show that the network achieves better outage and BER performance using the proposed scheme. It is found that the proposed scheme leads to a ten-fold decrease in transmit power for the same error performance of a fixed power allocation scheme. Further, it offers 96.06% improvement in the capacity for a cumulative noise figure and fading margin of 10 dB.  相似文献   

12.
An optimisation framework for wireless link adaptation which maximises the system throughput subject to a packet-level quality of service (QoS) constraint is presented. The authors consider joint adaptive variation of the transmitted power level, transmission data rate and packet-error-rate (PER) at the physical layer to improve the throughput performance of the selective-repeat automatic repeat request (SR-ARQ) protocol over block-fading channels. Specifically, for discrete-rate coded M-QAM schemes, the authors present a power and rate adaptation algorithm that guarantees a target PER constraint. The proposed framework also facilitates optimising the throughput performance for delay constrained wireless applications, which imposes a limit on the number of retransmissions for the ARQ. In particular, a link adaptation scheme is presented, which guarantees a target packet-loss rate (PLR) when a truncated SR ARQ protocol at the data-link layer is employed. Numerical results indicate that the proposed adaptation schemes compared with other adaptive schemes noticeably enhance the system throughput. Also, in the case of truncated ARQ, the results illustrate a fundamental trade-off between the delay and PLR QoS metrics achieved at the maximum throughput performance.  相似文献   

13.
The Internet subscribers are expected to increase up to 69.7% (6 billion) from 45.3% and 25 billion Internet-of-things connections by 2025. Thus, the ubiquitous availability of data-hungry smart multimedia devices urges research attention to reduce the energy consumption in the fifth-generation cloud radio access network to meet the future traffic demand of high data rates. We propose a new cell zooming paradigm based on joint transmission (JT) coordinated multipoint to optimize user connection by controlling the cell coverage in the downlink communications with a hybrid power supply. The endeavoring cell zooming technique adjusts the coverage area in a given cluster based on five different JT schemes, which will help in reducing the overall power consumption with minimum inter-cell interference. We provide heuristic solutions to assess wireless network performances in terms of aggregate throughput, energy efficiency index (EEI), and energy consumption gain under a different scale of network settings. The suggested algorithm allows efficient allocation of resource block and increases energy and spectral efficiency over the conventional location-centric cell zooming mechanism. Extensive system-level simulations show that the proposed framework reduces energy consumption yielding up to 17.5% and increases EEI by 14%. Subsequently, a thorough comparison among different JT-based load shifting schemes is pledged for further validation of varying system bandwidths.  相似文献   

14.
With the rapid development of Internet technology, users have an increasing demand for data. The continuous popularization of traffic-intensive applications such as high-definition video, 3D visualization, and cloud computing has promoted the rapid evolution of the communications industry. In order to cope with the huge traffic demand of today’s users, 5G networks must be fast, flexible, reliable and sustainable. Based on these research backgrounds, the academic community has proposed D2D communication. The main feature of D2D communication is that it enables direct communication between devices, thereby effectively improve resource utilization and reduce the dependence on base stations, so it can effectively improve the throughput of multimedia data. One of the most considerable factor which affects the performance of D2D communication is the co-channel interference which results due to the multiplexing of multiple D2D user using the same channel resource of the cellular user. To solve this problem, this paper proposes a joint algorithm time scheduling and power control. The main idea is to effectively maximize the number of allocated resources in each scheduling period with satisfied quality of service requirements. The constraint problem is decomposed into time scheduling and power control subproblems. The power control subproblem has the characteristics of mixed-integer linear programming of NP-hard. Therefore, we proposed a gradual power control method. The time scheduling subproblem belongs to the NP-hard problem having convex-cordinality, therefore, we proposed a heuristic scheme to optimize resource allocation. Simulation results show that the proposed algorithm effectively improved the resource allocation and overcome the co-channel interference as compared with existing algorithms.  相似文献   

15.
针对主用户链路经历深度衰落而发生通信中断的问题,提出了一种认知网络对主用户进行"透明"中继的方案。在不改变主用户通信协议的前提下,该方案首先感知主用户的状态,以判断其是否需要中继服务。当主用户通信发生中断时,认知网络利用从用户的能量检测器选出一个最优的节点解码转发主用户信号。从中断概率角度证明了这种最优单节点中继具有与多节点中继相同的空间分集作用,能够提高主用户平均传输效率,有较大的中继信道容量。通过仿真分析,验证了其分集效果和传输效率的提升。  相似文献   

16.
One of the most effective technology for the 5G mobile communications is Device-to-device (D2D) communication which is also called terminal pass-through technology. It can directly communicate between devices under the control of a base station and does not require a base station to forward it. The advantages of applying D2D communication technology to cellular networks are: It can increase the communication system capacity, improve the system spectrum efficiency, increase the data transmission rate, and reduce the base station load. Aiming at the problem of co-channel interference between the D2D and cellular users, this paper proposes an efficient algorithm for resource allocation based on the idea of Q-learning, which creates multi-agent learners from multiple D2D users, and the system throughput is determined from the corresponding state-learning of the Q value list and the maximum Q action is obtained through dynamic power for control for D2D users. The mutual interference between the D2D users and base stations and exact channel state information is not required during the Q-learning process and symmetric data transmission mechanism is adopted. The proposed algorithm maximizes the system throughput by controlling the power of D2D users while guaranteeing the quality-of-service of the cellular users. Simulation results show that the proposed algorithm effectively improves system performance as compared with existing algorithms.  相似文献   

17.
Compared with the traditional techniques of forest fires detection, wireless sensor network (WSN) is a very promising green technology in detecting efficiently the wildfires. However, the power constraint of sensor nodes is one of the main design limitations of WSNs, which leads to limited operation time of nodes and late fire detection. In the past years, wireless power transfer (WPT) technology has been known as a proper solution to prolong the operation time of sensor nodes. In WPT-based mechanisms, wireless mobile chargers (WMC) are utilized to recharge the batteries of sensor nodes wirelessly. Likewise, the energy of WMC is provided using energy-harvesting or energy-scavenging techniques with employing huge, and expensive devices. However, the high price of energy-harvesting devices hinders the use of this technology in large and dense networks, as such networks require multiple WMCs to improve the quality of service to the sensor nodes. To solve this problem, multiple power banks can be employed instead of utilizing WMCs. Furthermore, the long waiting time of critical sensor nodes located outside the charging range of the energy transmitters is another limitation of the previous works. However, the sensor nodes are equipped with radio frequency (RF) technology, which allows them to exchange energy wirelessly. Consequently, critical sensor nodes located outside the charging range of the WMC can easily receive energy from neighboring nodes. Therefore, in this paper, an energy-efficient and cost-effective wireless power transmission (ECWPT) scheme is presented to improve the network lifetime and performance in forest fire detection-based systems. Simulation results exhibit that ECWPT scheme achieves improved network performance in terms of computational time (12.6%); network throughput (60.7%); data delivery ratio (20.9%); and network overhead (35%) as compared to previous related schemes. In conclusion, the proposed scheme significantly improves network energy efficiency for WSN.  相似文献   

18.
With the emergence of 5G mobile multimedia services, end users’ demand for high-speed, low-latency mobile communication network access is increasing. Among them, the device-to-device (D2D) communication is one of the considerable technology. In D2D communication, the data does not need to be relayed and forwarded by the base station, but under the control of the base station, a direct local link is allowed between two adjacent mobile devices. This flexible communication mode reduces the processing bottlenecks and coverage blind spots of the base station, and can be widely used in dense user communication scenarios such as heterogeneous ultra-dense wireless networks. One of the important factors which affects the quality-of-service (QoS) of D2D communications is co-channel interference. In order to solve this problem of co-channel interference, this paper proposes a graph coloring based algorithm. The main idea is to utilize the weighted priority of spectrum resources and enables multiple D2D users to reuse the single cellular user resource. The proposed algorithm also provides simpler power control. The heterogeneous pattern of interference is determined using different types of interferences and UE and the priority of color is acquired. Simulation results show that the proposed algorithm effectively reduced the co-channel interference, power consumption and improved the system throughput as compared with existing algorithms.  相似文献   

19.
Zhao  L. Mark  J.W. 《Communications, IET》2008,2(4):562-572
The benefits of adaptive joint power control and rate allocation for uplink transmission in a wideband code division multiple access cellular system are investigated. Closed-loop power control (CLPC), to adaptively adjust the transmit power, has the effect of maintaining a target signal-to-interference ratio and bit error rate (BER) performance. On the other hand, rate adaptation requires less transmit power, although the BER performance may be poorer. The authors differentiate the power update interval from the data rate update interval, analyse and evaluate the performance of two joint rate/power adaptation algorithms in a fading environment: optimal spreading factor-power control (OSF-PC) and greedy rate packing-power control (GRP-PC). Numerical results show that GRP-PC exhibits superior throughput performance compared with other three adaptation schemes. CLPC alone exhibits throughput and BER performances comparable to those of the OSF-PC scheme, but consumes a significantly higher amount of transmit power. Rate adaptation only is not efficient in enhancing throughput, but its power consumption is minimal.  相似文献   

20.
Peng  M. Wang  Y. Wang  W. 《Communications, IET》2007,1(5):999-1006
Infrastructure wireless mesh network, also named as mesh router, is one key topology for the next generation wireless networking. In this work, the performance optimisation for the infrastructure wireless mesh network is presented and the sub-optimum solution mechanism is investigated. A cross-layer design for tree-type routing, level-based centralised scheduling and distributed power control theme is proposed as the sub-optimum solution strategy. The cross-layer design relies on the channel information and the distributed transmission power control in the physical layer, and the wireless scheduling in the medium access control (MAC) layer, as well as the routing selection mechanism in the MAC upper layer. In this work, a modified distributed power control algorithm is proposed first. In addition, a tree-type routing construction algorithm for centralised scheduling is presented to improve the network throughput by jointly considering interference and hop-count to construct the routing tree. Simulation results show that the proposed cross-layer design strategy can effectively improve the network throughput performance, decrease the power consumption and achieve better performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号