首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
陶瓷磨削机理及其对表面/亚表面损伤的影响   总被引:5,自引:0,他引:5  
磨削加工是先进陶瓷材料的最常用的加工方法,但常引起被加工零件的表面/亚表面损伤。不同的材料去除方式对表面/亚表面损伤有着显著的影响。若要准确预测和有效控制磨削过程对陶瓷材料造成的表面/亚表面损伤,就必须首先了解陶瓷磨削的材料去除机理及其与材料表面/亚表面损伤之问的关系。在陶瓷材料磨削机理的研究中,大多使用压痕断裂力学模型或切削加工模型近似处理。在磨削过程中陶瓷材料去除机理一般可分为脆性断裂和塑性变形两大类型。通过对不同材料去除方式对不同的表面/亚表面损伤指标的影响,得出初步结论:对材料去除方式的控制是有效预测和控制材料表面/亚表面损伤的方法。  相似文献   

2.
采用金刚石砂轮是磨削热等静压氮化硅(HIPSN)陶瓷最常用的加工方法,但是被磨零件亚表面常常伴随裂纹、崩碎等加工损伤,因此研究裂纹扩展一直是工程陶瓷的热点问题。对磨削加工后的HIPSN陶瓷亚表面裂纹进行探究,分析其在磨削加工过程中产生裂纹的原因以及去除机理,研究结果表明在磨削过程中对裂纹进行适当的控制,可以提高陶瓷零件的可靠性。设置单因素实验,对不同磨削参数下HIPSN陶瓷的磨削力进行测量,通过扫描电镜(SEM)对亚表面裂纹和表面形貌进行观察,分析磨削力对亚表面裂纹的影响。实验结果表明:磨削力随着砂轮线速度的增大而减小,随着工件进给速度和磨削深度的增大而增大;当磨削力变大时,陶瓷亚表面裂纹扩展程度增加,表面形貌变差。在粗磨加工HIPSN陶瓷时,可以通过减小工件进给速度和磨削深度,提高砂轮线速度的方法来降低裂纹的扩展程度,能够有效降低后续工艺的加工时间和难度,提高表面质量。  相似文献   

3.
集成电路制造过程中,基于工件旋转磨削原理的超精密磨削技术是硅片平整化加工和图形硅片背面减薄的重要加工方法,但磨削加工不可避免会在硅片的表面/亚表面产生损伤,研究磨削硅片的亚表面损伤分布对于分析硅片发生弯曲或翘曲变形的原因,确定后续工艺的材料去除厚度都具有重要的指导意义.采用角度截面显微观测法研究工件旋转法磨削硅片的亚表面损伤深度沿晶向和径向的变化规律及光磨对磨削硅片的亚表面损伤分布的影响.结果表明,无光磨条件下磨削硅片的亚表面损伤深度在整个硅片表面分布不均匀,亚表面损伤深度沿周向在<110>晶向处大于<100>晶向,沿径向从中心到边缘逐渐增大;光磨条件下磨削硅片的亚表面损伤深度在整个硅片表面几乎是均匀的,且光磨后的硅片亚表面损伤深度明显小于无光磨条件下硅片亚表面损伤深度.  相似文献   

4.
李霞 《现代制造工程》2021,(6):57-62,68
工程陶瓷零件的亚表面损伤严重影响其可靠性和使用寿命,因此探究了磨削温度对氮化硅陶瓷表面裂纹扩展的影响。首先,通过K型热电偶测温技术获得磨削参数与磨削温度的关系;其次,通过陶瓷片磨削试验获得陶瓷内部亚表面裂纹扩展情况;最后,得出磨削温度对裂纹扩展的改善机制。试验结果表明,随着磨削速度、磨削深度的增加,磨削温度增大;随着进给速度的增加,磨削温度减小。纵向裂纹在陶瓷内部扩展时会产生与原纵向裂纹扩展方向相同或者相近的新纵向裂纹,新纵向裂纹的路径在残余热应力的作用下会改变方向,出现横向裂纹,当新横向裂纹与原横向裂纹扩展路径相交后,会引起陶瓷表面的断裂和剥落。当磨削温度由456℃增加到1 035℃时,裂纹扩展深度先由8.1μm减小到3.8μm后,再增大到19.2μm,在603~732℃时,裂纹扩展深度较小,为3.8~5.6μm。研究表明适当的磨削温度对陶瓷亚表面裂纹扩展有抑制作用。  相似文献   

5.
磨削速度对碳化硅陶瓷磨削损伤影响机制研究   总被引:1,自引:0,他引:1  
碳化硅陶瓷高速磨削过程中,磨粒对工件材料强力冲击,应变率剧增、复杂显微结构对应力波传送响应转变,材料力学行为发生变化,目前高速磨削对材料去除机制影响的物理本质认识还不清楚。为此,开展磨削速度对SiC陶瓷磨削裂纹损伤影响机制研究。通过单颗磨粒磨削SiC陶瓷试验,分析了磨削速度对SiC陶瓷磨削表面形貌、磨削亚表面裂纹损伤深度、磨削力和磨削比能的影响规律。试验结果表明,当SiC陶瓷材料以脆性方式去除时,磨削速度对裂纹损伤影响最为显著,随着磨削速度从20 m/s增加到160 m/s,磨削亚表面裂纹损伤深度从12.1μm快速降低到6μm。采用Voronoi法建立了金刚石磨削多晶SiC陶瓷有限元仿真模型,当磨粒切厚为0.3μm,磨削亚表面损伤以微裂纹为主;当磨粒切厚为1μm时,随着磨削速度增加,磨削亚表面裂纹损伤深度从14.7μm降低到4.6μm,磨削亚表面宏观沿晶裂纹逐渐变为微观裂纹。基于位错理论和冲击动力学理论,揭示了高速磨削过程中位错密度的增加和晶界反射应力波对应力场削弱作用是高速磨削SiC陶瓷裂纹损伤“趋肤效应”产生的机理。  相似文献   

6.
为了实现石英玻璃的高效低损伤超精密磨削加工,研究不同粒度金刚石砂轮磨削石英玻璃的表面和亚表面质量,建立表面粗糙度与亚表面损伤深度之间的关系模型。通过石英玻璃磨削试验研究400#、1 500#、2 000#和5 000#金刚石砂轮磨削石英玻璃的表面微观形貌、表面粗糙度及其亚表面损伤深度,分析相应的材料去除方式;基于压痕断裂力学理论分析脆性域磨削石英玻璃时工件表面微观形貌和亚表面微裂纹的形成机理,建立表面粗糙度PV值和亚表面损伤深度SSD之间的定量关系。研究结果表明:随着砂轮粒度的减小,石英玻璃磨削表面的凹坑、微裂纹、深划痕等缺陷逐渐减少,表面粗糙度Ra和PV以及亚表面损伤深度SSD均随之明显减小,从400#砂轮磨削表面的R_a 274.0 nm、PV 5.35μm和SSD 5.73μm降低至5 000#砂轮磨削表面的Ra 1.4 nm、PV 0.02μm和SSD 0.004μm。500#和1 500#砂轮磨削表面的材料去除方式为脆性断裂去除,2 000#砂轮磨削表面的材料去除方式同时包括脆性断裂去除和塑性流动去除,但以塑性流动去除为主,5 000#砂轮磨削表面的材料去除方式为塑性流动去除;脆性域磨削石英玻璃的表面粗糙度PV与亚表面损伤深度SSD之间满足SSD=(0.627~1.356) PV~(4/3)的数学关系。  相似文献   

7.
硅晶圆纳米磨削过程中产生的亚表面损伤限制了其使用寿命,亟需研究纳米磨削过程中单晶硅的亚表面损伤形成机制和抑制方法。文章首先建立了单晶硅纳米磨削的分子动力学仿真模型,研究其亚表面损伤形成机制。随后研究了磨削参数对磨削过程中磨削力、磨削温度以及亚表面损伤形成的影响机制。最后提出了单晶硅纳米磨削的损伤抑制策略。结果表明:单晶硅纳米磨削过程中结构相变和非晶化是其主要亚表面损伤形成机制。原始的Si-Ⅰ相在挤压和剪切作用下形成了Si-Ⅱ相、Si-Ⅲ相、Si-Ⅳ相、bct5-Si相以及非晶。磨削深度增加导致了磨削力和磨削温度升高,而磨削速度的增加导致磨削力减小,磨削温度升高。磨削力增大是导致亚表面损伤严重的主要原因,而一定程度的高温有利于抑制单晶硅的亚表面损伤。在纳米磨削单晶硅时,可通过减小磨削深度和提升磨削速度来实现亚表面损伤的抑制。  相似文献   

8.
光学材料磨削的亚表面损伤预测   总被引:1,自引:0,他引:1  
基于压痕断裂力学理论,建立了工件表面粗糙度与亚表层损伤深度的理论关系模型,用于预测磨削加工脆性光学材料引起的亚表层损伤深度.利用磁流变角度抛光技术检测了不同磨削加工工艺条件下亚表层的损伤深度,验证了理论模型的正确性.分析了加工工艺参数对工件表面粗糙度及亚表层损伤深度的影响规律,提出了提高材料去除率的磨削加工工艺方案.分析结果表明:脆性材料工件的亚表层损伤深度与工件的表面粗糙度呈非线性单调递增关系.工件亚表层损伤深度及工件表面粗糙度均随着切削深度和进给速度的增加而增加,随着主轴转速的增加而减小.对比实验结果与理论模型预测结果表明,提出的模型可以准确、无损伤地的预测磨削加工引起的工件亚表层损伤深度.  相似文献   

9.
磁流变抛光消除磨削亚表面损伤层工艺研究   总被引:1,自引:1,他引:1  
针对传统光学制造技术对亚表面控制局限性和磁流变抛光的特点,提出用磁流变抛光替代研磨工序直接衔接磨削工序的新工艺流程。采用自研的磁流变抛光机床KDMRF−1000和水基磁流变抛光液KDMRW-2进行了磁流变抛光去除磨削亚表面损伤层的实验研究。直径为100mm的K9材料平面玻璃,经过156min的磁流变粗抛,去除50um深度的亚表面损伤层,表面粗糙度Ra值提升至0.926nm,经过17.5min磁流变精抛,去除了200nm深度的材料,并消除磁流变粗抛产生的抛光纹路,表面粗糙度Ra值提升至0.575nm。应用磁流变抛光可以高效消除磨削产生的亚表面损伤层。磁流变抛光替代研磨工序直接衔接磨削工序的新工艺流程可以实现近零亚表面损伤和纳米精度抛光两个工艺目标。  相似文献   

10.
进行光学玻璃BK7超声振动辅助磨削试验,采用截面抛光法配合HF酸腐蚀法并通过扫描电子显微镜观测获得亚表面裂纹的最大深度,研究了主轴转速、磨削深度、进给速度和超声振动振幅对亚表面损伤裂纹最大深度的影响规律,分析了亚表面裂纹的几种形态及其成因。结果表明,随着主轴转速和超声振动振幅增大,磨削深度及进给速度减小,亚表面最大裂纹深度明显减小。超声振动的引入改善了磨削时的加工条件,对提高加工表面及亚表面的质量有一定帮助。  相似文献   

11.
针对传统金刚石砂轮磨削硅片存在的表面/亚表面损伤问题,研制了一种用于硅片化学机械磨削加工的新型常温固化结合剂软磨料砂轮。根据化学机械磨削加工原理和单晶硅的材料特性,设计的软磨料砂轮以氧化铈为磨料,二氧化硅为添加剂,氯氧镁为结合剂。研究了软磨料砂轮的制备工艺,分析了软磨料砂轮的微观组织结构和成分。通过测量加工硅片的表面粗糙度、表面微观形貌和表面/亚表面损伤,进一步研究了软磨料砂轮的磨削性能。最后,与同粒度金刚石砂轮磨削和化学机械抛光(CMP)加工的硅片进行了对比分析。结果表明,采用软磨料砂轮磨削的硅片其表面粗糙度Ra1nm,亚表面损伤仅为深度30nm的非晶层,远好于金刚石砂轮磨削硅片,接近于CMP的加工水平,实现了硅片的低损伤磨削加工。  相似文献   

12.
碳化硼研磨后蓝宝石晶体的亚表面损伤   总被引:1,自引:0,他引:1  
谢春  汪家林  唐慧丽 《光学精密工程》2017,25(12):3070-3078
介绍了蓝宝石材料的亚表面损伤形成机制。考虑碳化硼磨料可产生较小亚表面损伤的优点,本文基于游离磨料研磨方式,研究了不同粒度碳化硼磨料研磨后蓝宝石晶体的亚表面损伤。利用KOH化学腐蚀处理技术,对研磨后的样品进行了刻蚀;通过特定的腐蚀坑图像间接反映了蓝宝石晶体的亚表面损伤形貌特征,获得了W20、W10和W5碳化硼磨料产生的亚表面损伤深度,得到了在不同刻蚀时间下蓝宝石亚表面损伤形貌、表面粗糙度和刻蚀速率。研究结果显示:游离碳化硼磨料研磨造成的蓝宝石晶体的亚表面损伤密度相当显著,但损伤深度并不大,其随磨料粒度的增大而增大,W20、W10和W5粒度的磨料研磨后产生的亚表面损伤深度分别为7.4,4.1和2.9μm,约为磨料粒度的1/2。得到的结果表明采用碳化硼磨料研磨有利于获得低亚表面损伤的蓝宝石晶片,而采用由大到小的磨料逐次研磨可以快速获得低亚表面损伤的蓝宝石晶片。  相似文献   

13.
为研究在弹流润滑状态下表面形貌对亚表层特性的影响,利用激光加工方法获得2种微凹坑型织构表面形貌,通过将实测的表面形貌坐标输入弹流润滑数值计算程序得到油膜压力和膜厚分布;以对应工况的油膜压力作为表面法向压应力,利用Rabinowicz经验公式算出剪切应力;将表面法向压应力和切向剪应力叠加后对弹流润滑界面亚表层特性进行仿真研究。结果表明:表面织构使亚表层应力分布发生显著改变;微凹坑直径、卷吸速度对亚表层应力的大小与分布有不同的影响;亚表层变形在摩擦过程中呈现随深度增加先缓慢减小后快速下降的规律,研究结果将为通过表面形貌设计改善轴承等零件受力状况提供理论支持。  相似文献   

14.
研究了太赫兹散射式扫描近场光学显微镜(Terahertz scattering-type scanning near-field optical microscopy,THz s-SNOM)对亚表面金属微纳结构的显微成像检测。首次采用自主搭建的THz s-SNOM系统对表面覆盖了六方氮化硼薄膜的金微米线进行太赫兹近场显微测量,获得了具有纳米量级空间分辨率和较高对比度的近场显微图。结合全波数值模拟,分析了THz s-SNOM探测亚表面金属微纳结构的空间分辨率、近场散射信号强度和成像对比度。研究表明,THz s-SNOM具有优良的亚表面显微成像检测能力,可应用于微纳电子器件的亚表面结构表征和缺陷检测。  相似文献   

15.
This paper presents a novel fixed abrasive tool namely grain boundary cohesion fixed abrasive pellet (GBCFAP) which is able to provide higher finishing efficiency as well as better surface/subsurface quality of sapphire substrate during the chemo-mechanical grinding (CMG) process. The manufacturing procedures of GBCFAP are introduced in detail in this paper. It is found that the sintering temperature plays an important role to the strength of GBCFAP, and the strength of GBFCAP could be flexibly adjusted by sintering temperature. The experiment result suggests that the recommended sintering temperature ranges from 600 to 650 °C according to current CMG conditions. Meanwhile, comparing with conventional resin bound CMG wheel, 600 °C sintered GBCFAP CMG wheel performs better in terms of material removal rate and surface/subsurface quality since the chemical effect and mechanical effect during CMG process are well balanced. Meanwhile, the solid phase reaction between sapphire and Cr2O3 abrasive is demonstrated by TEM observation and XPS quantification.  相似文献   

16.
工件旋转法磨削硅片的磨粒切削深度模型   总被引:2,自引:0,他引:2  
半导体器件制造中,工件旋转法磨削是大尺寸硅片正面平坦化加工和背面薄化加工最广泛应用的加工方法。磨粒切削深度是反映磨削条件综合作用的磨削参量,其大小直接影响磨削工件的表面/亚表面质量,研究工件旋转法磨削的磨粒切削深度模型对于实现硅片高效率高质量磨削加工具有重要的指导意义。通过分析工件旋转法磨削过程中砂轮、磨粒和硅片之间的相对运动,建立磨粒切削深度模型,得到磨粒切削深度与砂轮直径和齿宽、加工参数以及工件表面作用位置间的数学关系。根据推导的磨粒切削深度公式,进一步研究工件旋转法磨削硅片时产生的亚表面损伤沿工件半径方向的变化趋势以及加工条件对磨削硅片亚表面损伤的影响规律,并进行试验验证。结果表明,工件旋转法磨削硅片的亚表面损伤深度沿硅片半径方向从边缘到中心逐渐减小,随着砂轮磨粒粒径、砂轮进给速度、工件转速的增大和砂轮转速的减小,加工硅片的亚表面损伤也随之变大,试验结果与模型分析结果一致。  相似文献   

17.
Traditionally, the development and optimization of the machining process with regards to the subsurface deformation are done through experimental method which is often expensive and time consuming. This article presents the development of a finite element model based on an updated Lagrangian formulation. The numerical model is able to predict the depth of subsurface deformation induced in the high- speed machining of Inconel 718 by use of a whisker-reinforced ceramic tool. The effect that the different cutting parameters and tool microgeometries has on subsurface deformation will be investigated both numerically and experimentally. This research article also addresses the temperature distribution in the workpiece and the connection it could have on the wear of the cutting tool. The correlation of the numerical and experimental investigations for the subsurface deformation has been measured by the use of the coefficient of determination, R2. This confirms that the finite element model developed here is able to simulate this type of machining process with sufficient accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号