首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
用通量分析研究三系杂交稻与亲本幼苗根部K~+(~(86)Rb~+)的通量与区域化。威优49和威优35的φ_(co)和φ_vc小于父、母本,而t_(c/2)和t_(v/2)则大于父、母本,表明F_1根部细胞质膜和液泡膜的持K~+能力强。若考虑K~+(~(86)Rb~+)的向上运输,则F_1的t_(c/2)小于母本而与父本相近。虽然F_1根部K~+(~(86)Rb~+)的区域化值与父、母本之间不存在明显的关系,但是F_1的J_(oc)和J_(cx)都高于母本,与父本相近。可见F~1在根部细胞质膜和液泡膜的持K~+能力方面有超亲现象,而与主动吸收机理有关的参数则靠近吸收和向上运输K~+效率高的父本,  相似文献   

2.
耐低钾籼稻幼苗根部的K~ (~(86)Rb~ )运输和通量分析   总被引:7,自引:0,他引:7  
用通量分析的方法比较研究籼稻73—07和税稻80—66根部K~ (~(86)Rb~ )的吸收和运输的差异。耐低钾的籼稻73—07根部吸收和运输K~ (~(86)Rb~ )的速率显著高于不耐低钾的釉稻80—66。前者的J_(oc)和J_(cx)分别为后者的5.9和5.6倍。籼稻73—07根部的Q_c和Q_v均高于籼稻80—66。由于上运速度快,籼稻73—07的t_c/2显著小于籼稻80—66,表明籼稻73—07根部的K~ (~(86)Rb~ )周转快,有利于根部从低钾介质中吸收K~ 。  相似文献   

3.
吸收溶液中CaCl_2促进了大麦根K~+净吸收,Ca~(++)本身对H~+分泌无影响,Cl~-减少了H~+净分泌量。 含有~(86)Rb的大麦根在1m mol/L KCl溶液中发生~(86)Rb外流,在H_2O、1m mol/L NaCl或0.5 m mol/L CaCl_2中没有明显外流。VO_4~(3-)、NaN_3和4℃低温均可以减少根段在1m mol/L KCl溶液中的~(86)Rb外流量。Ca~(++)抑制K~+(~(86)Rb~+)的外流,EDTA加剧外流,Ca~(++)可以逆转EDTA的效应。 Ca~(++)抑制K~+(~(86)Rb)外流和促进K~+净吸收的趋势相吻合。K~+吸收的通量分析结果表明,Ca~(++)抑制K~+通过质膜的外流,促进K~+由细胞质向液泡中转运,而不影响K~+通过质膜的内流速率。  相似文献   

4.
1×10~(-6)MABA促进经去离子水或10 mM KCl溶液预处理启再置于去离子水中的菜豆根的溢泌量,促进K~ 、Cl~-、NO~3~-、H_2PO_4~-向木质部的运输速率和这些离子在溢泌液中的浓度。但对根系的K~ 离子吸收无促进作用,也无抑制作用。 ABA处理的菜豆根20分钟之内,~(86)Rb~ 的运输速率为对照的1.4倍,溢泌速率为对照的3.5倍。6-BA抑制溢泌速率和离子向木质部的运输速率,6-BA降低ABA的促进作用。 菜豆叶片上涂布的ABA(90μg/株)可以运向根部,使根部的ABA含量增加到对照的3.6倍。菜豆植株的地上部经干热风处理后,根内的ABA含量减少到对照的大约1/3,根的溢泌速率和K~ 的运输速率也随之减少。  相似文献   

5.
叶切段和原生质体的~(86)Rb 吸收在1 h内与时间成正比,H~ 分泌在pH 5.4~5.6时明显减弱。两者的~(86)Rb~ 吸收和H~ 分泌对FC、CCCP、DES、DCMU、NaN_3、黑暗处理的反应程度相似。酶处理及脱壁没有使~(86)Rb~ 吸收和H~ 分泌发生很大的改变。 高渗条件下的叶切段的~(86)Rb~ 吸收速率比等水势条件下的快,但两者对上述多种处理的反应程度相似。~(86)Rb~ 吸收都与时间成正比。等渗及高渗条件下的叶切段的H~ 分泌对供气不足的敏感性相似。高渗处理没有使~(86)Rb~ 吸收的基本机制发生很大的改变。 0.6 M甘露醇的高渗条件下的叶切段的~(86)Rb~ 吸收速率比0.4 M甘露醇的高渗溶液下的叶切段大得多。说明膨压不是~(86)Rb~ 吸收的调节信号。 漂浮叶切段没有供氧不足的现象,DCMU处理不能使叶切段及原生质体的~(86)Rb~ 吸收和H~ 分泌减少到黑暗水平,说明氧化磷酸化和光合磷酸化均与物质运输的能量有关。  相似文献   

6.
三系杂交稻幼苗NH_4~+、K~+吸收的动力学分析   总被引:4,自引:0,他引:4  
三系杂交稻幼苗的NH_4~+吸收速率,汕优6号〉汕优3号〉南优3号〉军优。在亲本与子代的关系上,杂交第一代(F_1)的NH_4~+吸收速率介于父本与母本之间,而偏向于父本。在NH_4~+吸收的动力学参数方面,F_1的K_m小于母本而大于父本;F_1的V_(max)都大于母本而小于父本。杂交稻的NH_4~+吸收速率受到父本的遗传影响。 汕优6号、汕优3号和南优3号的K~+吸收速率很相近而且都大于亲本,表现有杂交优势。虽然优势不是很强,但在一生中可积累很多的钾。 NH_4~+抑制水稻幼苗K~+的吸收速率,但并不完全抑制K~+的吸收。K~+对NH_4~+的吸收速率没有影响。NH_4~+抑制K~+的吸收有竞争的性质。NH_4~+抑制K~+吸收的这种方式很可能是一种变构调节。  相似文献   

7.
水稻种子吸收的~(14)C-MET有80%滞留在颖壳内,出苗后地上部和地下部各器官均有~(14)C-MET分配;叶片吸收的~(14)C-MET可运输至地上部各器官,但多数滞留在原吸收部位,不运输到根部;根系从土壤中吸收~(14)C—MET运转到地上部各器官。土施的~(14)C-MET多数滞留在0~5cm的表层土壤。  相似文献   

8.
向敏  刘强  李妮亚  李伟  张云云 《广西植物》2016,36(4):387-396
为了比较引进红树与乡土红树的耐盐性差异,该研究以引进红树植物拉关木(Laguncularia racemosa)和乡土红树植物木榄(Bruguiera gymnorrhiza)与秋茄(Kandelia obovata)幼苗作为实验材料,分析其在不同Na Cl浓度(100、200、300、400 mmol·L~(-1))处理下各器官离子浓度(Na~+、Cl~–、K~+、Ca~(2+)和Mg~(2+))和叶光合作用的变化。结果表明:(1)高盐胁迫(400 mmol·L~(-1)Na Cl,28 d)处理下,拉关木根系Na~+增幅较小,秋茄根、叶Cl~–含量增幅均高于木榄和拉关木,说明拉关木在较高的盐浓度时能限制根系对Na~+、Cl~–的吸收,减少向地上部分运输。(2)高盐胁迫均增加3种红树根、叶的K~+浓度(木榄叶K~+略有降低,差异不显著),表明3种红树均可吸收K~+,来限制Na~+对植物的伤害;同时,降低3种红树根Ca~(2+)浓度,但拉关木根Ca~(2+)下降幅度小于秋茄和木榄,说明拉关木具有更强的防止Ca~(2+)流失的能力。(3)拉关木根维持Na~+/K~+、Na~+/Ca~(2+)平衡的能力强于秋茄和木榄。(4)高盐胁迫引起秋茄与木榄光合速率均降低,而拉关木光合速率却增加了54.1%。综上所述,拉关木能限制根系对Na Cl的吸收,有效维持Na~+/K~+、Na~+/Ca~(2+)的平衡,并保持较高的光合速率,这表明拉关木与木榄和秋茄相比具有更高的耐盐性。  相似文献   

9.
空心莲子草叶片K~+吸收的K_m比大豆和向日葵的要高,但I_m都相近。空心莲子草根系的溢泌速率及溢泌液中K~+浓度都比大豆和向日葵的高。后两者的溢泌速率相近,但向日葵根系溢泌液中K~+浓度却高于大豆。 这三种植物叶组织K~+含量因液泡的含K~+量不同而有明显差别。而液泡含K~+量和K_cv/K_cv的比值相一致。  相似文献   

10.
互花米草幼苗在不同浓度NaCl溶液中的生长和溶质的积累   总被引:3,自引:0,他引:3  
互花米草在NaCl营养液中能够大量积累Na~+和Cl~-,并对K~+、可溶性糖和游离脯氨酸的积累也有一定的促进作用,同时抑制了Ca~(2+)、Mg~(2+)和Pi的吸收。幼苗积累Na~+和Cl~-作为主要渗透剂。Na~+/K~+比值随着培养基NaCl浓度增大而提高。根部无机离子的总量明显高于地上部。NaCl明显降低幼苗地上部的渗透势,其变化随培养基渗透势的下降而降低。在NaCl营养液中培养的幼苗鲜重和含水置下降,但对于重影响不大,鲜重/干重比值随培养基NaCl浓度增大而降低。  相似文献   

11.
植物生长素在刺激某些植物组织生长的同时促进K~+吸收和H~+分泌(Hager等1971,Cleland1975,赖寿鹏和倪晋山1983),可能是由于生长素刺激位于植物细胞质膜上的H~+泵ATP酶(Scherer 1984,赖寿鹏和倪晋山1985)。但以往的文献中只测定了生长素促进的植物组织对K~+的净吸收速率,即组织中K~+的累积速率或吸收溶液中K~+的减少速率。自从MacRobbie和Dainty(1958)首先运用放射性  相似文献   

12.
The regulatory role of abscisic acid (ABA) and kinetin on influx of K+(86RB+) IN tools of 7day old intact winter wheat which plant (Fritieun aestivum I ass starke 1 and 11) Was studied the inhibitory effect of 40,80 μM ABA in the uptake solution on K+(86RB+)influx was transiently stipulated pretreatment of the plants with ABA kinetin content enacted inhibitors effect caused by ABA. At low water potential in the uptake solution (05MPa)K+(86RB+) influx was slights higher in the presence of ABA than in is absence High humidity 123kpa ca 100% relative humidity (RID)around the shoots counteracted the inhibitory effect on k+(86RB+) influx caused by A,B,A IN the uptake solution the present data contain the hypothesis that when plants are subjected to conditions such as low water potential and low temperature. ABA stimulates K influx to facilitate water uptake.  相似文献   

13.
Nitrendipine, a classical blocker of L-type Ca2+ channels, is shown to be a potent inhibitor of the Ca(2+)-activated K+ channel of human erythrocytes. In erythrocytes suspended in a solution with physiological Na+ and K+ concentrations and in which the channel was activated using the Ca2+ ionophore ionomycin, nitrendipine inhibited K+(86Rb+) influx with an I50 of around 130 nM. Similar results were obtained for K+(86Rb+) efflux, and for K+(86Rb+) influx into cells suspended in a high-K+ medium.  相似文献   

14.
Roots of wheat seedlings (Triticum aestivum L. cv. Weibulls Starke) were cooled (+1°C) for 24 h while the shoots were kept at 25°C. The treatment induced an increased water deficit in the leaves. Fresh weight, dry weight, and the uptake and distribution of potassium and calcium were measured before and after cooling. Growth, measured both as fresh weight and dry weight increase, was reduced during the cold treatment. Afterwards (at 20°C), growth recovered to nearly pre-stress rates. Analysis of the potassium fluxes in and out of the roots by 86Rb techniques showed that influx, and to a lesser extent efflux, were inhibited at low temperature. The result was a net potassium uptake rate of one-third that of unstressed plants. After the cooling period the potassium influx increased to the rate of control plants. The potassium efflux increased to one and one-half times the rate of unstressed wheat so that net uptake was negative. The increase in potassium efflux was explained by a higher permeability of the root cell membranes after cooling. The net uptake of calcium was reduced to one-third by root cooling. Contrary to potassium uptake, calcium uptake increased under post-stress conditions, partly due to a low efflux rate. During root cooling there was a redistribution of dry matter from the leaves down towards the lower part of the shoot. Afterwards the original distribution of dry matter was reestablished. The net flow of potassium and calcium followed a similar pattern as dry matter, suggesting a growth-regulated flow.  相似文献   

15.
The effect of pH and Ca2+ on net NO3- uptake, influx, and efflux by intact roots of barley (Hordeum vulgare L.) seedlings was studied. Seedlings were induced with NO3- or NO2-. Net NO3- uptake and efflux, respectively, were determined by following its depletion from, and accumulation in, the external solution. Since roots of both uninduced and NO2(-)-induced seedlings contain little internal NO3- initial net uptake rates are equivalent to influx (M. Aslam, R.L. Travis, R.C. Huffaker [1994] Plant Physiol 106: 1293-1301). NO3-, uptake (influx) by these roots was little affected at acidic pH. In contrast, in NO3(-)-induced roots, which accumulate NO3-, net uptake rates decreased in response to acidic pH. Under these conditions, NO3- efflux was stimulated and was a function of root NO3- concentration. Conversely, at basic pH, NO3- uptake by NO3- and NO2(-)-induced and uninduced roots decreased, apparently because of the inhibition of influx. Calcium had little effect on NO3- uptake (influx) by NO2(-)-induced roots at either pH 3 or 6. However, in NO3(-)-induced roots, lack of Ca2+ at pH 3 significantly decreased net NO3- uptake and stimulated efflux. The results indicate that at acidic pH the decrease in net NO3- uptake is due to the stimulation of efflux, whereas at basic pH, it is due to the inhibition of influx.  相似文献   

16.
The effects of growth and assay temperature on unidirectionalK+ fluxes in excised roots of rye (Secale cereale cv. Rheidol)were studied using 86Rb+ as a tracer. Both K+ influx to thevacuole, estimated as K+ uptake between 3 and 12 h after transferof unlabelled roots to radioactive solution, and movement ofK+ to the xylem were determined directly. Other fluxes weredetermined on excised roots of plants, which had been labelledwith 86Rb+ since germination, by conventional triple exponentialefflux analysis. When assayed at 20°C, roots of plants previously grown at20°C(WG roots) had lower rates of net K+ uptake than rootsof low temperature-acclimated plants, grown with a temperaturediferential between roots (87°C) and shoots (20°C) eithersince germination (DG roots) or for 3 d prior to experiments(DT roots). This resulted from a greater unidirectional K+ effluxacross the plasma membrane and a reduced K+ flux to the xylemin WG roots, compared to DG or DT roots, rather than a decreasein unidirectional K+ influx or a decrease in the net K+ fluxto the vacuole. Indeed, although WG roots had lower rates ofK+ influx and K+ efflux across the tonoplast at 20°C thanDG or DT roots, roots of plants from all growth temperaturetreatments showed an equivalent net K+ flux to the vacuole. Although all unidirectional K+ fluxes in roots from plants grownunder all temperature regimes were reduced by lowering the temperatureof the root, these fluxes were differentially affected in rootsof plants from contrasting growth temperature treatments. Rapidcooling to 8°C of WG roots resulted in a lower rate of K+influx and a transient increase in K+ efflux across both theplasma membrane and tonoplast, compared to DG and DT roots.Furthermore, since the K+ flux to the xylem was lower in WGroots, the net K+ uptake at 8°C into WG roots was considerablyreduced compared to DG and DT roots. These results suggest thatlow temperature-acclimation of K+ fluxes in rye roots may involvea reduction in the temperature sensitivity of K+ influx anda curtailment of K+ efflux across both the plasma membrane andtonoplast at low temperatures. Key words: K+influx, K+ efflux, low temperature, potassium, rye (Secale cereale cv. Rheidol)  相似文献   

17.
It was investigated whether K(+) efflux, like K(+) influx, is affected when roots are transferred between solutions with different K(+) concentrations. Sunflower plants (Hehanthus annuus L. cv. Uniflorus) were grown on complete nutrient solutions with 0.1, 1.0, 10 or 25 mM K(+) . This produced plants with K(+) concentrations in the roots varying between 9 and 110 μmol (g fresh weight)(-1) . At the beginning of the experiments the plants were transferred to an (86) Rb-labelled experimental solution initially containing 0.1 mM K(+) . At intervals during 6.5 h samples were removed from the solution and analyzed for K(+) and radioactivity. Based on the analyses K(+) ((86) Rb) influx, K(+) net uptake and K(+) efflux could be computed. In'low K(+) 'roots, K(+) ((86) Rb) influx and K(+) net uptake agreed, suggesting a very low K(+) efflux. This was contrary to'high K(+) 'roots, where K(+) efflux was initially higher than K(+) ((86) Rb) influx. After about 4 h, K(+) efflux declined to a low value also in these roots. When 2-4-dinitrophenol was included in the experimental solution, K(+) ((86) Rb) influx was generally depressed, whereas K(+) efflux was high throughout the experiment and directly proportional to the K(+) status of the roots. Our hypothesis is that after transfer of'high K(+) 'roots to a solution with low K(+) concentration, the K(+) efflux from the vacuoles of root cells transiently increases, until a new electrochemical equilibrium is attained.  相似文献   

18.
13N-labeled nitrate was used to trace short-term nitrate influx into Lemna gibba L. G3 in experiments where disappearance of both radioactivity and total nitrate from the incubation medium was measured continuously and simultaneously. In plants performing net nitrate uptake from an initial nitrate concentration of 40 to 60 micromolar, there was no discrepancy between net uptake and influx, irrespective of the N status of the plants, indicating that concomitant nitrate efflux was low or nil. Plants treated with tungstate to inactivate nitrate reductase were able to take up nitrate following induction of the uptake system by exposure to a low amount of nitrate. Also, in this case, net uptake was equivalent to influx. In tungstate-treated plants preloaded with nitrate, both net uptake and influx were nil. In contrast to these observations, a clear discrepancy between net uptake and influx was observed when the plants were incubated at an initial nitrate concentration of approximately 5 micromolar, where net uptake is low and eventually ceases. It is concluded that plasmalemma nitrate transport is essentially unidirectional in plants performing net uptake at a concentration of 40 to 60 micromolar, and that transport is nil when internal nitrate sinks (vacuole, metabolism) are eliminated. The efflux component becomes increasingly important when the external concentration approaches the threshold value for net nitrate uptake (the nitrate compensation point) where considerable exchange between internal and external nitrate occurs.  相似文献   

19.
以小麦品种‘石麦15’和‘衡观35’为材料进行营养液水培试验,研究不同浓度硝态氮供应对小麦苗期根系形态、钙离子流特征及钙调蛋白(CaM)含量的影响。结果表明,与适宜浓度硝态氮处理(2.5mmol/L)相比,无外源硝态氮供应时小麦地上部鲜重、硝态氮含量均降低,侧根数量显著减少;高浓度硝态氮处理(50mmol/L)下两个小麦品种地上部硝态氮含量升高,根系总长度降低,‘石麦15’侧根数量减少。无硝态氮和高浓度硝态氮处理下,根系中钙调蛋白含量降低,且‘衡观35’的降低幅度大于‘石麦15’。无外源硝态氮供应时小麦根尖表现出较为明显的钙离子外流特征;与适宜浓度硝态氮处理相比,高硝态氮处理下小麦根尖Ca2+的内流速度显著下降。说明硝态氮供应不足和高浓度硝态氮供应会影响小麦根系生长,根系Ca2+外流或Ca2+内流速度下降,CaM含量减少,Ca2+/CaM可能介导硝态氮调控小麦根系生长发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号