首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《Organic Electronics》2014,15(3):798-808
A mixed lanthanide β-diketonate complex of molecular formula [Eu0.45Tb0.55(btfa)3(4,4′-bpy)(EtOH)] (btfa = 4,4,4–trifluoro–1–phenyl–1,3–butanedionate; 4,4′-bpy = 4,4′-dipyridyl; EtOH = ethanol) was synthesized and its structure was elucidated by single crystal X-ray diffraction. The temperature dependence of the complex emission intensity between 11 and 298 K is illustrated by the Commission Internacionale l’Éclairage (CIE) (x, y) color coordinates change within the orange-red region, from (0.521, 0.443) to (0.658, 0.335). The existence of Tb3+-to-Eu3+ energy transfer was observed at room temperature and as the complex presents a relatively high emission quantum yield (0.34 ± 0.03) it was doped in a 4,4′-bis(carbazol-9-yl)biphenyl (CBP) organic matrix to be used as emitting layer to fabricate a white organic light-emitting diode (WOLED). Continuous electroluminescence emission was obtained varying the applied bias voltage showing a wide emission band from 400 to 700 nm. The white emission results from a combined action between the Eu3+ and Tb3+ peaks from the mixed Eu3+/Tb3+ complex and the other organic layers forming the device. The intensity ratio of the peaks is determined by the layer thickness and by the bias voltage applied to the OLED, allowing us to obtain a color tunable light source.  相似文献   

2.
The concept of the self-formation of a nanocrystallite (nc-) Si/SiOx : SizOyAl nanocomposite at the Al/oxidized porous silicon interface in the result of solid-phase processes between Al and oxidized porous Si (PS) and the influence of its composition on photophysical properties were developed and experimentally confirmed for the Si chip with optical intra-chip interconnect consisting of light emitting and photodetector diodes and alumina waveguide on oxidized PS surface with aluminum electrodes. The peculiarities of nanocomposite photophysical properties (the refractive index, photoluminiscence (PL) peak situation, PL spectrum shape in the green range) have been shown to be due to the quantum confinement effects (revealed by XPS, Raman spectroscopy) and depend on the Al presence in the nanocomposite (obtained by XPS, IR spectroscopy). The experimental confirmation of this concept is (i) the shift of the nc-Si valence band relatively to that of monocrystalline Si (c-Si) on 0.2–0.7 eV for nc-Si size in 2.5–6.5 nm range; (ii) the decrease of Si nanocrystallite size in the Al presence; (iii) the approach of the value of the refractive index of nc-Si : SiO : Si2O3 : SizOyAl nanocomposite at λ=236 nm to that of porous Si with 45% porosity and (iv) the stable green PL spectra in the SizOyAl presence in the nanocomposite.  相似文献   

3.
YVO4:Ba2+ nanoparticles with a Ba2+ doping concentration x=0%, 1%, 3%, 5%, 7% and 9% were synthesized by a solvothermal method and then they were codoped with Eu3+ ions by an ion exchange method to form the YVO4:Eu3+,Ba2+ nanoparticles. It was found that the photoluminescence intensity of the as-prepared YVO4:Eu3+,Ba2+ nanoparticles steadily increased with x until x=7%, and then decreased for higher x. Thermal annealing resulted in considerable enhancement in their photoluminescence, and higher annealing temperature led to stronger photoluminescence enhancement. The emission intensity of the YVO4:Eu3+,Ba2+ (x=7%) nanoparticles annealed at 500 °C was about 205% stronger than the sample without Ba2+ doping. Thermal annealing of the ion-exchanged YVO4:Eu3+,Ba2+ nanoparticles at 500 °C and 700 °C resulted in photoluminescence enhancement of about 14 times and 27 times, respectively. The asymmetric ratio of Eu3+ in the ion-exchanged YVO4:Eu3+,Ba2+ nanoparticles was found to increase after annealing.  相似文献   

4.
The aim of this work is to model the properties of GaInAsNSb/GaAs compressively strained structures. Indeed, Ga1?xInxAs1?y?zNySbz has been found to be a potentially superior material to GaInAsN for long wavelength laser dedicated to optical fiber communications. Furthermore, this material can be grown on GaAs substrate while having a bandgap smaller than that of GaInNAs. The influence of nitrogen and antimony on the bandgap and the transition energy is explored. Also, the effect of these two elements on the optical gain and threshold current density is investigated. For example, a structure composed of one 7.5 nm thick quantum well of material with In=30%, N=3.5%, Sb=1% composition exhibits a threshold current density of 339.8 A/cm2 and an emission wavelength of 1.5365 μm (at T=300 K). It can be shown that increasing the concentration of indium to 35% with a concentration of nitrogen and antimony, of 2.5% and 1%, respectively, results in a decrease of the threshold current density down to 253.7 A/cm2 for a two well structure. Same structure incorporating five wells shows a threshold current density as low as 221.4 A/cm2 for T=300 K, which agrees well with the reported experimental results.  相似文献   

5.
The CoxNiyO hybrid metal oxide nanoparticles (HMONs) embedded in the HfOxNy high-k dielectric as charge trapping nodes of the nonvolatile memory devices have been formed via the chemical vapor deposition using the Co/Ni acetate calcined and reduced in the Ar/NH3 ambient. A charge trap density of 8.96 × 1011 cm?2 and a flatband voltage shift of 500 mV were estimated by the appearance of the hysteresis in the capacitance–voltage (C–V) measurements during the ±5 V sweep. Scanning electron microscopy image displays that the CoxNiyO HMONs with a diameter of ~10–20 nm and a surface density of ~1 × 1010 cm?2 were obtained. The mechanism related to the writing characteristics are mainly resulted from the holes trapping. Compared with those devices with the CoxNiyO HMONs formed by the dip-coated technique, memory devices with the CoxNiyO HMONs fabricated by the drop-coated technique show improved surface properties between the CoxNiyO HMONs and the HfON as well as electrical characteristics.  相似文献   

6.
Silicon-oxide–nitride-oxide–silicon devices with nanoparticles (NPs) as charge trapping nodes (CTNs) are important to provide enhanced performance for nonvolatile memory devices. To study these topics, the TiOxNy metal oxide NPs embedded in the HfOxNy high-k dielectric as CTNs of the nonvolatile memory devices were investigated via the thermal synthesis using Ti thin-film oxidized in the mixed O2/N2 ambient. Well-isolated TiOxNy NPs with a diameter of 5–20 nm, a surface density of ~3 × 1011 cm?2, and a charge trap density of around 2.33 × 1012 cm?2 were demonstrated. The writing characteristic measurements illustrate that the memory effect is mainly due to the hole trapping.  相似文献   

7.
There is an emission peak at 494 nm in the electroluminescence (EL) of PVK [poly(n-vinylcarbazole)]: Eu(o-BBA)3(phen) besides PVK exciton emission and Eu3+ characteristic emissions. Both the peaking at 494 nm emission and PVK emission influenced the color purity of red emission from Eu(o-BBA)3(phen). In order to restrain these emissions and obtain high intensity red emission, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7,-tetramethyljulolidy-9-enyl)-4Hpyran (DCJTB) and Eu(o-BBA)3(phen) were co-doped in PVK solution and used as the active emission layer. The EL intensity of co-doped devices reached to 420 cd/m2 at 20 V driving voltage. The chromaticity coordinates of EL was invariable (x = 0.55, y = 0.36) with the increase of driving voltage. For further improvement of EL intensity, organic–inorganic hybrid devices (ITO/active emission layer/ZnS/Al) were fabricated. The EL intensity was increased by a factor of 2.5 [(420 cd/m2)/(168 cd/m2)] when the Eu complex was doped with an efficient dye DCJTB, and by a factor of ≈4 [(650 cd/m2)/(168 cd/m2)] when in addition ZnS layer was deposited on such an emitting layer prior to evaporation of the Al cathode.  相似文献   

8.
We report the effect of yellow Sr2SiO4:Eu2+ and green SrGa2S4:Eu2+ phosphors on the efficiency of organic photovoltaic (OPV) cells. Each phosphor was coated on the back side of indium tin oxide (ITO)/glass substrates by spin coating with poly(methyl methacrylate) (PMMA). The maximum absorption wavelength of the active layer in the OPV cells was ~512 nm. The emission peaks of Sr2SiO4:Eu2+ and SrGa2S4:Eu2+ were maximized at 552 nm and 534 nm, respectively. The short circuit current density (Jsc) and power conversion efficiency (PCE) of the OPV cells with Sr2SiO4:Eu2+ (8.55 mA/cm2 and 3.25%) and with SrGa2S4:Eu2+ (9.29 mA/cm2 and 3.3%) were higher than those of the control device without phosphor (7.605 mA/cm2 and 3.04%). We concluded that phosphor tuned the wavelength of the incident light to the absorption wavelength of the active layer, thus increasing the Jsc and PCE of the OPV cells.  相似文献   

9.
The purpose of this study is to reduce textured crystalline silicon (TCS) substrate surface-reflectivity over a wide spectral range (300–1100 nm), to improve the step coverage of the textured structure, and to shift the minimal value of reflection from the unabsorbed region to the absorbed region. The TCS solar-cell interface between air and silicon was added to a SiOx/SiOxNy/SiNx triple-layer anti-reflective coatings (TLARCs) structure using the plasma-enhanced chemical vapor deposition (PECVD) growth method. This paper presents theoretical and practical discussions, as well as the experimental results of fabricating the films and devices. The average reflection of the SiOx/SiOxNy/SiNx TLARs reduced to 2.01% (300–1100 nm). The minimal value of reflection was shifted from 1370 nm (unabsorbed region) to 968 nm (absorbed region). The SEM images show effective step coverage. In comparison to the untreated TCS solar cells, applying the experimental SiOx/SiOxNy/SiNx TLARCs to conventional TCS solar cells improved the short-circuit current density (Jsc) by 7.78%, and solar-cell efficiency by 10.95%. This study demonstrates that the SiOx/SiOxNy/SiNx TLARCs structure provides antireflective properties over a broad range of visible and near-infrared light wavelengths. An effective step coverage and minimal value of reflection from unabsorbed region shift to the absorbed region is demonstrated.  相似文献   

10.
The present paper deals with the effect of europium (Eu3+) doping concentration (0.1–2.5 mol%) on photoluminescence (PL) and thermoluminescence (TL) of strontium yttrium oxide (SrY2O4) phosphor. The sample was prepared by the modified solid state reaction method, which is the most suitable method for large-scale production. The prepared phosphor sample was characterized by using X-ray Diffraction (XRD), field emission gun scanning electron microscopy, fourier transform infrared spectroscopy, high resolution transmission electron microscopy, photoluminescence, thermoluminescence and commission internationale de I׳Eclairage techniques. The PL emission was observed in the range of 410–630 nm for the SrY2O4 phosphor doped with Eu3+. Excitation spectrum was found at 254 and 325 nm, sharp peaks were found around 593, 615 and 625 nm with high intensity. From the XRD data, using Scherrer׳s formula, calculated average crystallite size of Eu3+ doped SrY2O4 phosphor is around 32 nm. Thermoluminescence study was carried out for the phosphor with UV and gamma irradiation. The TL response of SrY2O4:Eu3+ phosphor for two different radiations was compared and studied in detail. The present phosphor can act as a single host for white light emission in display devices. The detailed process and possible mechanisms for PL and TL are studied and discussed. For the variable concentration of Eu3+ on PL studies the PL intensity increases with increasing the concentration of dopant and the concentration quenching found after 2 mol% of Eu3+ the optimized concentration was 2 mol%, which is suitable for the display device application. In TL glow curve the optimized concentration was 1 mol% for the UV irradiated sample and 0.2 mol% of Eu3+ for the gamma irradiated sample and beta irradiated sample for 10 Gy dose. The kinetic parameters were calculated by the computerized glow curve deconvolution (CGCD) technique.  相似文献   

11.
A near white GaN-based multiple quantum well (MQW) light emitting diode (LED) was grown by metal–organic chemical vapor deposition on top of a 20-period GaN/AlzGa1?zN distributed Bragg reflector (DBR). Photoluminescence, electroluminescence and high resolution X-ray diffraction were performed to analyze the sample characteristics. The results show that the introduction of the DBR increases the ratio of the green to blue light intensities. Near white light emission with commission international de l’Eclairage color coordinates x=0.18, y=0.28 was achieved at injection current 20 mA for the sample with DBR.  相似文献   

12.
There is an increasing need to develop stable, high-intensity, efficient OLEDs in the deep blue and UV. Applications include blue pixels for displays and tunable narrow solid-state UV sources for sensing, diagnostics, and development of a wide band spectrometer-on-a-chip. With the aim of developing such OLEDs we demonstrate an array of deep blue to near UV tunable microcavity (μc) OLEDs (λ ∼373–469 nm) using, in a unique approach, a mixed emitting layer (EML) of poly(N-vinyl carbazole) (PVK) and 4,4′-bis(9-carbazolyl)-biphenyl (CBP), whose ITO-based devices show a broad electroluminescence (EL) in the wavelength range of interest. This 373–469 nm band expands the 493–640 nm range previously attained with μcOLEDs into the desired deep blue-to-near UV range. Moreover, the current work highlights interesting characteristics of the complexity of mixed EML emission in combinatorial 2-d μcOLED arrays of the structure 40 nm Ag/x  nm MoOx/∼30 nm PVK:CBP (3:1 weight ratio)/y  nm 4,7-diphenyl-1,10-phenanthroline (BPhen)/1 nm LiF/100 nm Al, where x = 5, 10, 15, and 20 nm and y = 10, 15, 20, and 30 nm. In the short wavelength μc devices, only CBP emission was observed, while in the long wavelength μc devices the emission from both PVK and CBP was evident. To understand this behavior simulations based on the scattering matrix method, were performed. The source profile of the EML was extracted from the measured EL of ITO-based devices. The calculated μc spectra indeed indicated that in the thinner, short wavelength devices the emission is primarily from CBP; in the thicker devices both CBP and PVK contribute to the EL. This situation is due to the effect of the optical cavity length on the relative contributions of PVK and CBP EL through a change in the wavelength-dependent emission rate, which was not suggested previously. Structural analysis of the EML and the preceding MoOx layer complemented the data analysis.  相似文献   

13.
In this paper, we report the obtention of a series of rare earth doped composite Pt/RE/TiO2-CdS (RE=La3+, Eu3+, Er3+, Gd3+) and TiO2-CdS photocatalysts prepared by a simple mechanical mixed method. The photocatalysts properties were studied by means of ultraviolet-visible spectroscopy, photoluminiscence spectra, X-ray diffraction, transmission electron microscopy, specific surface areas and the electrochemistry method. Photocatalytic hydrogen evolution using Na2S/Na2SO3 as electron donor was investigated under visible-light (λ≥420 nm) irradiation. The rare earth doping enhances the activities of Pt/RE/TiO2-CdS samples (with 1.0 wt% deposited Pt). Under optimum conditions, the activities of La3+, Eu3+, Er3+, Gd3+ doped composite Pt/RE/TiO2-CdS increase by 62.0%, 40.4%, 34.7% and 30.0% respectively, when compared to that of Pt/TiO2-CdS, due to the prevention of electron–hole recombination and the flat-band potential of the conduction of TiO2 shifting negatively by the doping.  相似文献   

14.
We determined some optical and electrical properties of thin gold phthalocyanine films. Calculations were performed in the framework of density functional theory using the full potential linear augmented plane wave method. Studies on the density of states and band structure yielded a bandgap energy (Eg) of approximately 2 eV. Two trap energy levels were observed at 0.9 and 1.3 eV. Analysis of the dielectric function and electric loss function revealed a plasmon oscillation at 1.8 eV. In addition, we determined static refractive index values in the x, y and z directions of n0xx = 2.16, n0yy = 1.66 and n0zz = 2.07. The optical bandgap of gold phthalocyanine was estimated to be 0.97 eV. Calculations revealed strong absorption at 400–700 nm, which compares favorably with experimental results.  相似文献   

15.
This article reports on the epitaxy of crystalline high κ oxide Gd2O3 layers on Si(1 1 1) for CMOS gate application. Epitaxial Gd2O3 thin films have been grown by Molecular Beam Epitaxy (MBE) on Si(1 1 1) substrates between 650 and 750 °C. The structural and electrical properties were investigated depending on the growth temperature. The CV measurements reveal that equivalent oxide thickness (EOT) equals 0.7 nm for the sample deposited at the optimal temperature of 700 °C with a relatively low leakage current of 3.6 × 10?2 A/cm2 at |Vg ? VFB| = 1 V.  相似文献   

16.
Rare-earth ternary complexes EuXLa1?X(TTA)3Dipy (X = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0) were synthesized. Characterization with DTA-TG, IR, elemental analysis and fluorescent spectra had also been carried out. It is found that the enhanced luminescence of Eu3+ ions by La3+ ions occurs in ternary complexes, and when X = 0.25, Eu0.25La0.75(TTA)3Dipy has the highest luminescence efficiency and lifetime. It is proved by TG curve that the complexes are stable, and we monitored the spectra of EuXLa1?X(TTA)3Dipy[PVK:EuXLa1?X(TTA)3Dipy/BCP/AlQ/Al] at the different rate r min?1. The results showed that the La3+ ion acts as an energy transfer bridge that helps energy transfer from PVK to Eu3+.  相似文献   

17.
Trivalent Eu3+-doped CdS quantum dot (CdS: Eu3+ QD)-sensitized TiO2 nanotube arrays (TNTAs) solar cells are prepared by using the direct adsorption method. The influences of sensitization time, sensitization temperature, and Eu3+ ion concentrations are investigated systematically. The photo-current of the CdS: Eu3+ QDs/TiO2 nanotubes appear at the main absorption region of 320–480 nm, and the maximum incident photon to the current conversion efficiency (IPCE) value is 21% at 430 nm when the sensitization condition is 4% doping Eu3+ concentration, 60 °C sensitization temperature, 8 h sensitization time. Compared with the un-doped CdS QD-sensitized TNTAs, the conversion efficiency and IPCE of CdS: Eu3+ QDs/TNTAs are two times and three times than that of un-doped CdS QDs sensitized TNTAs. This scenario exhibits the potential applications of rare earth elements in QD-sensitized solar cells.  相似文献   

18.
Europium-doped lanthanum fluoride (LaF3:Eu3+) nanoparticles were synthesized using a solvothermal method, and they were then capped with benzoic acid (BA) ligands to form LaF3:Eu3+–BA hybrid nanostructures. The LaF3:Eu3+–BA hybrid nanostructures showed strong luminescence as a result of energy transfer from BA to the Eu3+ ions of the LaF3:Eu3+ nanoparticles. The dominant excitation band for the LaF3:Eu3+–BA hybrid nanostructures ranged from 200 nm to 300 nm. It has been shown that the luminescence of LaF3:Eu3+–BA hybrid nanostructures strongly depends on the pH value and content of benzoic acid used in the preparation of the hybrid nanostructures. An X-ray diffraction technique, transmission electron microscopy, luminescence spectroscopy, Fourier transform infrared spectroscopy and a UV–vis spectrophotometer were used to characterize the products.  相似文献   

19.
A self-aligned process for fabricating inversion n-channel metal–oxide–semiconductor field-effect-transistors (MOSFET’s) of strained In0.2Ga0.8As on GaAs using TiN as gate metal and Ga2O3(Gd2O3) as high κ gate dielectric has been developed. A MOSFET with a 4 μm gate length and a 100 μm gate width exhibits a drain current of 1.5 mA/mm at Vg = 4 V and Vd = 2 V, a low gate leakage of <10?7 A/cm2 at 1 MV/cm, an extrinsic transconductance of 1.7 mS/mm at Vg = 3 V, Vd = 2 V, and an on/off ratio of ~105 in drain current. For comparison, a TiN/Ga2O3(Gd2O3)/In0.2Ga0.8As MOS diode after rapid thermal annealing (RTA) to high temperatures of 750 °C exhibits excellent electrical and structural performances: a low leakage current density of 10?8–10?9 A/cm2, well-behaved capacitance–voltage (CV) characteristics giving a high dielectric constant of ~16 and a low interfacial density of state of ~(2~6) × 1011 cm?2 eV?1, and an atomically sharp smooth Ga2O3(Gd2O3)/In0.2Ga0.8As interface.  相似文献   

20.
Aluminum-doped zinc oxide (ZnO:Al, AZO) electrodes were covered with very thin (∼6 nm) Zn1−xMgxO:Al (AMZO) layers grown by atomic layer deposition. They were tested as hole blocking/electron injecting contacts to organic semiconductors. Depending on the ALD growth conditions, the magnesium content at the film surface varied from x = 0 to x = 0.6. Magnesium was present only at the ZnO:Al surface and subsurface regions and did not diffuse into deeper parts of the layer. The work function of the AZO/AMZO (x = 0.3) film was 3.4 eV (based on the ultraviolet photoelectron spectroscopy). To investigate carrier injection properties of such contacts, single layer organic structures with either pentacene or 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine layers were prepared. Deposition of the AMZO layers with x = 0.3 resulted in a decrease of the reverse currents by 1–2 orders of magnitude and an improvement of the diode rectification. The AMZO layer improved hole blocking/electron injecting properties of the AZO electrodes. The analysis of the current-voltage characteristics by a differential approach revealed a richer injection and recombination mechanisms in the structures containing the additional AMZO layer. Among those mechanisms, monomolecular, bimolecular and superhigh injection were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号