首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B22 Glu Des-B30 Insulin: A Novel Monomeric Insulin   总被引:1,自引:0,他引:1  
Studies on monomeric insulin with reduced self-association are important in the development of insulin pharmaceutical preparations with rapid hypoglycemic action on patients with diabetes. Here we report a novel monomeric insulin, B22 Glu des-B30 insulin, prepared from a single chain insulin precursor with B22 Arg mutated to Glu, which was expressed in Pichia pastoris and converted to B22 Glu des-B30 insulin by tryptic digestion. It still retains 50% of the in vivo biological activity of porcine insulin and does not form a dimer even at a concentration of 10 mg/ml, showing that B22 Glu plays a key role in reducing the self- association of the insulin molecule without greatly reducing its biological activity. This novel monomeric insulin might have potential applications in the clinic.  相似文献   

2.
3.
In this review we discuss the biological significance of D-chiro-inositol, originally discovered as a component of a putative mediator of intracellular insulin action, where as a putative mediator, it accelerates the dephosphorylation of glycogen synthase and pyruvate dehydrogenase, rate limiting enzymes of non-oxidative and oxidative glucose disposal.Early studies demonstrated a linear relationship between its decreased urinary excretion and the degree of insulin resistance present. When tissue contents, including muscle, of type 2 diabetic subjects were assayed, they demonstrated a more general body deficiency. Administration of D-chiro-inositol to diabetic rats, Rhesus monkeys and now to humans accelerated glucose disposal and sensitized insulin action.A defect in vivo in the epimerization of myoinositol to chiro-inositol in insulin sensitive tissues of the GK type 2 diabetic rat has been elucidated. Thus, administered D-chiro-inositol may act to bypass a defective normal epimerization of myo-inositol to D-chiro-inositol associated with insulin resistance and act to at least partially restore insulin sensitivity and glucose disposal.  相似文献   

4.
5.
ObjectiveTo determine the benefit of neutral protamine Hagedorn (NPH) insulin compared with insulin glargine in a patient with type 2 diabetes mellitus and severe insulin resistance.MethodsWe describe the patient’s clinical findings and treatment course.ResultsA 52-year-old man with a 3-year history of type 2 diabetes mellitus did not achieve adequate glucose control despite escalation of his treatment regimen to insulin glargine, 80 units twice daily; insulin lispro, 60 units before each meal; and metformin. Dietary and lifestyle changes were emphasized and implemented while medication adherence with appropriate insulin technique was reviewed at each visit. Insulin glargine was replaced with the same dosage of NPH insulin. After 3 months, a significant drop in hemoglobin A1c was noted, from 9.5% to 6.1%, consistent with the improved capillary glucose measurements. The effect was maintained over the following year, without any major hypoglycemic events.ConclusionNPH insulin might be superior to the long-acting analogue insulin glargine in cases of severe insulin resistance, but randomized studies are needed to confirm our finding and clarify the involved mechanisms. (Endocr Pract. 2012;18:e49-e51)  相似文献   

6.
《Endocrine practice》2016,22(6):726-735
Objective: To compare two methods of delivering intensified insulin therapy (IIT) in patients with type 2 diabetes inadequately controlled on basal insulin ± concomitant antihyperglycemic agents in a real-world clinical setting.Methods: Data for this retrospective study were obtained using electronic medical records from a large multicenter diabetes system. Records were queried to identify patients transitioned to V-Go® disposable insulin delivery device (V-Go) or multiple daily injections (MDI) using an insulin pen to add prandial insulin when A1C was >7% on basal insulin therapy. The primary endpoint was the difference in A1C change using follow-up A1C results.Results: A total of 116 patients were evaluated (56 V-Go, 60 MDI). Both groups experienced significant glycemic improvement from similar mean baselines. By 27 weeks, A1C least squares mean change from baseline was -1.98% (-21.6 mmol/mol) with V-Go and -1.34% (-14.6 mmol/mol) with MDI, for a treatment difference of -0.64% (-7.0 mmol/mol; P = .020). Patients using V-Go administered less mean ± SD insulin compared to patients using MDI, 56 ± 17 units/day versus 78 ± 40 units/day (P<.001), respectively. Diabetes-related direct pharmacy costs were lower with V-Go, and the cost inferential from baseline per 1% reduction in A1C was significantly less with V-Go ($118.84 ± $158.55 per patient/month compared to $217.16 ± $251.66 per patient/month with MDI; P = .013).Conclusion: Progression to IIT resulted in significant glycemic improvement. Insulin delivery with V-Go was associated with a greater reduction in A1C, required less insulin, and proved more cost-effective than administering IIT with MDI.Abbreviations:A1C = glycated hemoglobinANCOVA = analysis of covarianceCI = confidence intervalCSII = continuous subcutaneous insulin infusionFPG = fasting plasma glucoseIIT = intensified insulin therapyLSM = least squares meanMDI = multiple daily injectionsT2DM = type 2 diabetes mellitusTDD = total daily dose  相似文献   

7.
8.
Type 2 diabetes mellitus (T2DM) results from insulin resistance and β-cell dysfunction, in the setting of hyperglucagonemia. Glucagon is a 29 amino acid peptide hormone, which is secreted from pancreatic α cells: excessively high circulating levels of glucagon lead to excessive hepatic glucose output. We investigated if α-cell numbers increase in T2DM and what factor (s) regulate α-cell turnover. Lepr(db)/Lepr(db) (db/db) mice were used as a T2DM model and αTC1 cells were used to study potential α-cell trophic factors. Here, we demonstrate that in db/db mice α-cell number and plasma glucagon levels increased as diabetes progressed. Insulin treatment (EC50 = 2 nM) of α cells significantly increased α-cell proliferation in a concentration-dependent manner compared to non-insulin-treated α cells. Insulin up-regulated α-cell proliferation through the IR/IRS2/AKT/mTOR signaling pathway, and increased insulin-mediated proliferation was prevented by pretreatment with rapamycin, a specific mTOR inhibitor. GcgR antagonism resulted in reduced rates of cell proliferation in αTC1 cells. In addition, blockade of GcgRs in db/db mice improved glucose homeostasis, lessened α-cell proliferation, and increased intra-islet insulin content in β cells in db/db mice. These studies illustrate that pancreatic α-cell proliferation increases as diabetes develops, resulting in elevated plasma glucagon levels, and both insulin and glucagon are trophic factors to α-cells. Our current findings suggest that new therapeutic strategies for the treatment of T2DM may include targeting α cells and glucagon.  相似文献   

9.
Synaptic loss is a major neuropathological correlate of memory decline as a result of Alzheimer's disease (AD). This phenomenon appears to be aggravated by soluble amyloid-β (Aβ) oligomers causing presynaptic terminals to be particularly vulnerable to damage. Furthermore, insulin is known to participate in synaptic plasticity through the activation of the insulin receptor (IR) and the PI3K signaling pathway, while low concentrations of soluble Aβ and Aβ oligomers aberrantly modulate IR function in cultured neurons. To further examine how Aβ and insulin interact in the pathology of AD, the present work analyzes the effect of insulin and Aβ in the activation of the IR/PI3K pathway in synaptosomes. We found that insulin increased mitochondrial activity and IR/Akt phosphorylation in synaptosomes taken from both hippocampus and cortex. Also, pretreatment with Aβ antagonized insulin's effect on hippocampal synaptosomes, but not vice versa. These results show that Aβ can reduce responsiveness to insulin. Combined with evidence that insulin desensitization can increase the risk of developing AD, our results suggest that the initial mechanism that impairs synaptic maintenance in AD might start with Aβ changes in insulin sensitivity.  相似文献   

10.
It has long been accepted wisdom that insulin secreted from islet beta cells has either no effect, or an inhibitory feedback effect, on insulin synthesis and secretion. Recent work suggests, instead, that secreted insulin acts directly on beta cells, via its own receptor, to enhance insulin production in an autocrine feed-forward loop.  相似文献   

11.
Insulin/IGF-I signaling regulates the metabolism of most mammalian tissues including pancreatic islets. To dissect the mechanisms linking insulin signaling with mitochondrial function, we first identified a mitochondria-tethering complex in β-cells that included glucokinase (GK), and the pro-apoptotic protein, BADS. Mitochondria isolated from β-cells derived from β-cell specific insulin receptor knockout (βIRKO) mice exhibited reduced BADS, GK and protein kinase A in the complex, and attenuated function. Similar alterations were evident in islets from patients with type 2 diabetes. Decreased mitochondrial GK activity in βIRKOs could be explained, in part, by reduced expression and altered phosphorylation of BADS. The elevated phosphorylation of p70S6K and JNK1 was likely due to compensatory increase in IGF-1 receptor expression. Re-expression of insulin receptors in βIRKO cells partially restored the stoichiometry of the complex and mitochondrial function. These data indicate that insulin signaling regulates mitochondrial function and have implications for β-cell dysfunction in type 2 diabetes.  相似文献   

12.
Insulin signaling is essential for -cell survival and proliferation in vivo. Insulin also has potent mitogenic and anti-apoptotic actions on cultured -cells, with maximum effect in the high picomolar range and diminishing effect at high nanomolar doses. In order to understand whether these effects of insulin are constitutive or can be subjected to physiological modulation, it is essential to estimate the extracellular concentration of monomeric insulin within an intact islet. Unfortunately, the in vivo concentration of insulin monomers within the islet cannot be measured directly with current technology. Here, we present the first mathematical model designed to estimate the levels of monomeric insulin within the islet extracellular space. Insulin is released as insoluble crystals that exhibit a delayed dissociation into hexamers, dimers, and eventually monomers, which only then can act as signaling ligands. The rates at which different forms of insulin dissolve in vivo have been estimated from studies of peripheral insulin injection sites. We used this and other information to formulate a mathematical model to estimate the local insulin concentration within a single islet as a function of glucose. Model parameters were estimated from existing literature. Components of the model were validated using experimental data, if available. Model analysis predicted that the majority of monomeric insulin in the islet is that which has been returned from the periphery, and the concentration of intra-islet monomeric insulin varies from 50–300 pM when glucose is in the physiological range. Thus, our results suggest that the local concentration of monomeric insulin within the islet is in the picomolar ‘sweet spot’ range of insulin doses that activate the insulin receptor and have the most potent effects on -cells in vitro. Together with experimental data, these estimations support the concept that autocrine/paracrine insulin signalling within the islet is dynamic, rather than constitutive and saturated.  相似文献   

13.
《Endocrine practice》2012,18(3):382-386
ObjectiveTo evaluate the mathematical relationships between dosing factors in type 1 diabetic patients using multiple daily injections.MethodsIn this single-center, prospective study in type 1 diabetic patients, the basal continuous glucose monitoring glucose target was less than 130 mg/dL with fewer than 10% of 24-hour readings at less than 70 mg/dL. Basal glucose for the 4-hour meal periods was obtained from once-daily serial meal omissions. On an isocaloric, 50% carbohydrate, fixed diet, the insulin to carbohydrate ratio was adjusted to achieve a 2-to 4-hour postbolus glucose value within ± 20% of premeal glucose. For determining dosing formulas, the slope of the linear regression line comparing the variables of weight, total daily dose (TDD), total basal dose (TBD), insulin-to-carbohydrate ratio (ICR), and correction factor (CF) was determined.ResultsForty-nine patients were included. Titrating insulin glargine to the morning glucose led to hypoglycemia during the rest of the day (2 PM to 4 AM). Therefore the basal glucose target was the nondawn phenomenon portion of the day. The resulting estimation formulas could be rounded to the following:
  1. Download : Download full-size image
ConclusionsSmaller insulin glargine doses to achieve control are in contrast to those much larger doses reported in clinical trials in multiple daily injection-treated type 1 diabetes in which the morning fasting glucose is the basal insulin target. (Endocr Pract. 2012;18:382-386)  相似文献   

14.

Background

A meta-analysis of genome-wide data reported the discovery of the rs35767 polymorphism near IGF1 with genome-wide significant association with fasting insulin levels. However, it is unclear whether the effects of this polymorphism on fasting insulin are mediated by a reduced insulin sensitivity or impaired insulin clearance. We investigated the effects of the rs35767 polymorphism on circulating IGF-1 levels, insulin sensitivity, and insulin clearance.

Methodology/Principal Findings

Two samples of adult nondiabetic white Europeans were studied. In sample 1 (n=569), IGF-1 levels were lower in GG genotype carriers compared with A allele carriers (190±77 vs. 218±97 ng/ml, respectively; P=0.007 after adjusting for age, gender, and BMI). Insulin sensitivity assessed by euglycaemic-hyperinsulinemic clamp was lower in GG genotype carriers compared with A allele carriers (8.9±4.1 vs. 10.1±5.1 mg x Kg-1 free fat mass x min-1, respectively; P=0.03 after adjusting for age, gender, and BMI). The rs35767 polymorphism did not show significant association with insulin clearance. In sample 2 (n=859), IGF-1 levels were lower in GG genotype carriers compared with A allele carriers (155±60 vs. 164±63 ng/ml, respectively; P=0.02 after adjusting for age, gender, and BMI). Insulin sensitivity, as estimated by the HOMA index, was lower in GG genotype carriers compared with A allele carriers (2.8±2.2 vs. 2.5±1.3, respectively; P=0.03 after adjusting for age, gender, and BMI).

Conclusion/Significance

The rs35767 polymorphism near IGF1 was associated with circulating IGF-1 levels, and insulin sensitivity with carriers of the GG genotype exhibiting lower IGF-1 concentrations and insulin sensitivity as compared with subjects carrying the A allele.  相似文献   

15.
16.

Background

Polycystic ovary syndrome (PCOS) is characterized by a hyperandrogenic state and frequently develops skeletal muscle insulin resistance. We determined whether testosterone adversely affects insulin action by increasing serine phosphorylation of IRS-1636/639 in differentiated rat skeletal muscle myotubes. The phosphorylation of Akt, mTOR, and S6K, downstream targets of the PI3-kinase-IRS-1 complex were also studied.

Methods

Primary differentiated rat skeletal muscle myotubes were subjected to insulin for 30 min after 16-hour pre-exposure to either low (20 ng/ml) or high (200 ng/ml) doses of testosterone. Protein phosphorylation of IRS-1 Ser636/639, Akt Ser473, mTOR-Ser2448, and S6K-Thr389 were measured by Western blot with signal intensity measured by immunofluorescence.

Results

Cells exposed to 100 nM of insulin had increased IRS-1 Ser636/639 and Akt Ser473 phosphorylation. Cells pre-exposed to low-dose testosterone had significantly increased insulin-induced mTOR-Ser2448 and S6K-Thr389 phosphorylation (p<0.05), and further increased insulin-induced IRS-1 Ser636/639 phosphorylation (p = 0.042) compared to control cells. High-dose testosterone pre-exposure attenuated the insulin-induced mTOR-Ser2448 and S6K-Thr389 phosphorylation.

Conclusions

The data demonstrated an interaction between testosterone and insulin on phosphorylation of intracellular signaling proteins, and suggests a link between a hyperandrogenic, hyperinsulinemic environment and the development of insulin resistance involving serine phosphorylation of IRS-1 Ser636/639. These results may guide further investigations of potential mechanisms of PCOS-related insulin resistance.  相似文献   

17.
18.
The function of pancreatic β-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ERα and ERβ, are important molecules involved in glucose metabolism, yet their role in pancreatic β-cell physiology is still greatly unknown. In this report we show that both ERα and ERβ are present in pancreatic β-cells. Long term exposure to physiological concentrations of 17β-estradiol (E2) increased β-cell insulin content, insulin gene expression and insulin release, yet pancreatic β-cell mass was unaltered. The up-regulation of pancreatic β-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ERα and ERβ agonists as well as ERαKO and ERβKO mice suggests that the estrogen receptor involved is ERα. The up-regulation of pancreatic insulin content by ERα activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

19.
Obesity-associated, system-wide elevations in free fatty acids, tumor necrosis factor alpha, and glucocorticoids increase intracellular lipid metabolites and promote insulin resistance. In this issue, Holland et al. (2007) provide pharmacological and genetic evidence that ceramide plays a key role in the development of insulin resistance induced by these factors.  相似文献   

20.
《Cell metabolism》2014,19(5):872-882
  1. Download : Download high-res image (264KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号