首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
Zhang Z  Zhang X  Xin Z  Deng M  Wen Y  Song Y 《Nanotechnology》2011,22(42):425601
In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO(3) mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 × 10( - 8)-8.76 × 10( - 8) Ω m after thermal treatment at 160?°C for 30 min, which was about five times that of bulk silver (1.586 × 10( - 8) Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.  相似文献   

2.
导电油墨厚度对RFID标签天线辐射效率的影响   总被引:5,自引:5,他引:0  
曹丽娜  钱军浩 《包装工程》2012,33(5):122-125
为提高RFID电子标签天线的辐射效率,从理论上分析了影响标签天线辐射效率的一系列因素,以偶极子和叠缝隙2种天线为研究对象,研究了导电油墨厚度对RFID标签天线的辐射效率的影响。结果表明:决定天线的辐射效率的是印刷标签天线所用的总油墨量,而不是整个天线结构中不同区域内油墨的分布情况。为实际RFID电子标签生产中导电油墨的控制和改进,提供一些指导。  相似文献   

3.
Dong-Youn Shin 《Thin solid films》2009,517(21):6112-2793
The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 °C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 μΩ cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.  相似文献   

4.
Printed antennas with variable conductive ink layer thickness   总被引:2,自引:0,他引:2  
One of the complex tasks in mass production of RF electronics is printing the communication antenna using electrically conductive ink. For example, this is very common for radio- frequency identification (RFID) tags. Electrical properties of the ink are mostly determined by conductive (e.g. silver) particles mixed into the ink solution and the way they `connect' in the cured ink. It is also desirable to minimise the amount of ink used per antenna, because high-conducting metals like silver used in the ink are rather expensive. Metal-based inks have limited conductivity, so the thicker the cured ink layer will be the better the antenna radiation efficiency can be achieved, but also the higher will be the costs. In the paper, the authors report on the investigations of the possibility of minimising the amount of ink used per antenna. This can be achieved by printing thicker ink layers, where antenna structures are known to have high current density. Two common antenna structures and a dedicated antenna for passive RFID are used in the investigation. The main result of the paper is that radiation efficiency depends primarily on the total amount of ink used for printing the antenna, rather than on the variations of the layer thickness within the antenna structure  相似文献   

5.
Due to their complex formulation, conductive nanoparticle inks for inkjet printing are limited in terms of the types of metals and substrates that can be utilized. A new and simplified class of inks called metal salt decomposition (MSD) inks has the potential to introduce a multitude of metals, which can be printed directly onto a wide range of substrates. Here, the use of atmospheric oxygen plasma to develop polycrystalline Au and Pt films at processing temperatures near room temperature (≈33 °C) with excellent conductivities up to 105 S m−1 is demonstrated. The conformal nature of the ink allows metal films to be printed onto a broad range of temperature-sensitive substrates including polymers, papers, and fabric. The Au ink is then used to build a simple light-emitting diode circuit showing its flexibility, durability, and long-term stability as deposited thin metal films. Additionally, such inks cost less than one-third the price of similar nanoparticle inks highlighting their overall affordability and good stability.  相似文献   

6.
基于喷墨印刷的RFID标签天线性价比优化方法研究   总被引:3,自引:3,他引:0  
沈丽燕  钱军浩 《包装工程》2012,33(15):121-124
以小型偶极子天线为研究对象,采用无选择和选择性2种不同的喷墨印刷方式印制,对比了2种印刷方式下天线的识别距离和油墨耗用量。实验证明,在表面电流密度较高处进行选择性印刷,以增加墨层厚度的方法,有利于降低喷墨印制无源超高频RFID标签天线的成本,性价比明显提高。  相似文献   

7.
纳米导电油墨具有独特的物理及化学性质,而导电填料则决定导电油墨的性能。概述了纳米导电油墨的组成、分类及特点,主要论述了纳米银的特性,相较于其他填料,纳米银具备良好的导电性、导热性、纳米光学性、高比表面积等特性,因而纳米银作为导电填料成为了制备导电油墨的首选;进一步阐述了纳米银的制备方法及纳米银导电油墨的配方设计及制备工艺,通过不同的研究分析了纳米银导电油墨性能的影响因素,以及纳米银导电油墨在不同包装应用的发展趋势,并对其应用研究提出了建议。  相似文献   

8.
目的 探究纳米银导电油墨及其在柔性印刷电子中的应用。方法 通过总结国内外文献,从纳米银颗粒及其导电油墨的制备、印刷工艺、烧结工艺以及在柔性印刷电子技术中的应用几方面总结近年来的研究进展。结果 在油墨制备及使用中,简化制备工艺、降低生产成本、实现绿色环保、低温烧结,同时提高油墨的基材适应性是未来纳米银导电油墨的改进重点。直写技术具有精度高、速度快等优势,正逐渐替代丝网印刷技术成为主流。烧结工艺的研究重点在于实现低温烧结,其中化学烧结工艺简单,但提高导电性是研究重点。其他烧结方式则设备昂贵,环境要求高。结论 作为功能性电子材料,纳米银导电油墨因出色的电性能和印刷适性,正在被广泛应用于柔性印刷电子中。近年来通过对纳米银及其导电油墨的深入研究及技术改进,在纳米银颗粒的制备、低温烧结技术、节能环保加工工艺等方面获得了一定的进展。与此同时,将其作为功能材料应用于制备柔性传感器中,RFID标签天线、柔性电极、超级电容器、太阳能电池等正受到广泛研究与应用。  相似文献   

9.
无线射频识别技术用导电油墨的研究   总被引:1,自引:0,他引:1  
介绍了无线射频标签(RFID)及其制作方法、工作原理和应用领域,阐明了RFID天线与导电油墨之间的关系,重点对导电油墨的组成、分类、不同体系油墨的特点进行了阐述,并对无机系、有机系和复合型三大类导电油墨的国内外研究现状做了详细的阐述和对比分析,指出了这三类油墨的特点和发展趋势,其中复合型导电油墨以其独特的优势,在导电油墨未来的研究和应用领域中,将替代传统的有机、无机系导电油墨,成为导电油墨的主导及RFID天线制作材料的首选.  相似文献   

10.
Direct stamping of functional materials has been developed to reduce the number of processes and cost, and to increase throughput. However, there remain several challenging issues. One of the challenging issues is the residue-remaining problem after direct stamping. This significantly reduces reliability of stamping of micro-patterns and life-span of stamps. Here we present that direct stamping of silver nanoparticle generated conductive pattern with super-oleophobic stamp. A stamp was fabricated with UV-curable urethane rubber modified by perfluorinated silane. A master fabricated by photolithography and Bosch type etching enabled us to obtain a stamp patterned with a 2D array of voids with nano-scale re-entrant walls. And complete residue-free direct stamping of silver nanoparticles onto a glass substrate has been achieved using the stamp for little contact between the silver nanoparticle ink and the stamp was allowed by super-oleophobicity which resulted from the stamp material and pattern.  相似文献   

11.
目的 综述导电油墨及其印刷方式的研究进展,为开发价格低廉、性能稳定、导电性优良的导电油墨提供参考。方法 通过查阅文献归纳各类导电油墨的制备方式、印刷方式和应用领域,对导电油墨进行系统分类,比较各类导电油墨的性能和优缺点,并对其印刷技术进行分析,展望了导电油墨的发展前景。结果 目前关于导电油墨的研究集中在纳米银、纳米铜、石墨烯等导电填料的低温烧结油墨,主要采用丝网印刷、喷墨印刷等印刷方式,多用于制备传感器、柔性可穿戴设备等。未来的研究仍需关注如何低成本、低能耗、简单大量地制造导电油墨。结论 导电油墨的制备将与环境友好型的印刷方式相结合,向高导电性、高印刷适性发展,成为印刷电子领域的关键技术。  相似文献   

12.
IR-sintering of ink-jet printed metal-nanoparticles on paper   总被引:1,自引:0,他引:1  
Sintering of printed metal nanoparticles can be made not only by conventional heating, but also by, e.g., electrical, microwave, plasma, laser and flash lamp annealing. We demonstrate sintering by using low-cost incandescent lamps as an effective way of obtaining highly conductive contacts of two types of ink-jet printed metal-nanoparticle inks on paper; both alkanethiol protected gold nanoparticles and a commercially available silver nanoparticle ink. This low-cost roll-to-roll compatible sintering process is especially suitable on paper substrates because of the high diffuse reflectance, relatively high thermal stability and low thermal conductivity of paper. A volume resistivity of around 10 μΩ cm was achieved of the inkjetted silver nanoparticles within 15 s of exposure to an IR lamp, which corresponds to a conductivity of 10-20% of that of bulk silver. Too long exposure time and too high intensity, however, lead to darkening of the paper fibers. Both the crack formation and the coffee ring effect of the inkjet printed gold nanoparticles were, furthermore, found to be reduced on paper as compared to glass or plastic substrates.  相似文献   

13.
Printed functional conductive inks have triggered scalable production of smart electronics such as energy-storage devices, antennas, wearable electronics, etc. Of particular interest are highly conductive-additive-free inks devoid of costly postdeposition treatments to eliminate sacrificial components. Due to the high filler concentration required, formulation of such waste-free inks has proven quite challenging. Here, additive-free, 2D titanium carbide MXene aqueous inks with appropriate rheological properties for scalable screen printing are demonstrated. Importantly, the inks consist essentially of the sediments of unetched precursor and multilayered MXene, which are usually discarded after delamination. Screen-printed structures are presented on paper with high resolution and spatial uniformity, including micro-supercapacitors, conductive tracks, integrated circuit paths, and others. It is revealed that the delaminated nanosheets among the layered particles function as efficient conductive binders, maintaining the mechanical integrity and thus the metallic conductive network. The areal capacitance (158 mF cm−2) and energy density (1.64 µWh cm−2) of the printed micro-supercapacitors are much superior to other devices based on MXene or graphene. The ink formulation strategy of “turning trash into treasure” for screen printing highlights the potential of waste-free MXene sediment printing for scalable and sustainable production of next-generation wearable smart electronics.  相似文献   

14.
Radio‐frequency (RF) electronics, which combine passive electromagnetic devices and active transistors to generate and process gigahertz (GHz) signals, provide a critical basis of ever‐pervasive wireless networks. While transistors are best realized by top‐down fabrication, relatively larger electromagnetic passives are within the reach of printing techniques. Here, direct writing of viscoelastic silver‐nanoparticle inks is used to produce a broad array of RF passives operating up to 45 GHz. These include lumped devices such as inductors and capacitors, and wave‐based devices such as transmission lines, their resonant networks, and antennas. Moreover, to demonstrate the utility of these printed RF passive structures in active RF electronic circuits, they are combined with discrete transistors to fabricate GHz self‐sustained oscillators and synchronized oscillator arrays that provide RF references, and wireless transmitters clocked by the oscillators. This work demonstrates the synergy of direct ink writing and RF electronics for wireless applications.  相似文献   

15.
16.
导电油墨是印刷电子技术中使用的关键电子材料, 而导电填料作为导电油墨的主要成分要求其化学性能稳定且电导率高。其中, 基于石墨烯的导电油墨因为其、透射电子显微镜、拉曼光谱等手段对制备的石墨烯进行了表征。结果表明: 直流电弧放电法制备的石墨烯为2~10层、尺寸在100~200 nm范围且纯度高、结晶性好。在此基础上, 研究了涂层厚度、热处理温度以及弯曲角度等对石墨烯导电油墨导电性能的影响。研究发现, 石墨烯导电油墨电阻率与涂层厚度、热处理温度成反比, 且随着厚度、温度的增加石墨烯导电油墨的电阻率逐渐降低。并且样品在柔性基底上经过不同角度的弯曲折叠后电阻率没有明显变化。当厚度为170 μm的样品经过360℃ (30 min) 热处理后, 石墨烯导电油墨的电阻率仅为0.003 Ω·cm。上述结果表明, 电弧法制备的石墨烯导电油墨有望成为未来印制电子领域的关键材料。  相似文献   

17.
施彤  邓巧云  李大纲 《包装工程》2022,43(21):50-57
目的 综述液相剥离法制备石墨烯导电油墨的研究现状,为促进石墨烯导电油墨在印刷电子领域的应用提供参考。方法 针对各种形式液相剥离制备石墨烯导电油墨的方法,分别从所使用溶剂的物理化学性能、制备流程、制得石墨烯导电油墨的性能等方面进行归纳和对比。结果 目前,液相剥离法制备石墨烯导电油墨的研究主要集中在提升石墨烯的分散性和油墨的导电性能等方面,未来需关注液相剥离过程中溶剂和助剂的选择,沿着低成本、绿色化、产业化等方向发展。  相似文献   

18.
Direct writing of copper conductive patterns by ink-jet printing   总被引:5,自引:0,他引:5  
Ink-jet printing of metal nanoparticles is an attractive method for direct patterning conductive metal lines owing to low-cost, low-waste, and simple process. While most of the researches here focused on novel metals such as gold and silver, we have developed a conductive ink containing copper nanoparticles as an alternative that is inexpensive conductive material. Copper particles with a size of 40-50 nm were synthesized by polyol process, from which the well-dispersed conductive ink with low viscosity was prepared. We have successfully demonstrated a direct writing of the conductive lines using Cu conductive ink. The ink-jet printed copper patterns exhibited metal-like appearance and became highly conductive upon heat treatments. The resistivity of the film reached to 17.2 μΩ cm at 325 °C for 1 h in vacuum.  相似文献   

19.
As a critical component for the realization of flexible electronics,multifunctional electronic textiles(etextiles)still struggle to achieve controllable printing accuracy,excellent flexibility,decent washability and simple manufacturing.The printing process of conductive ink plays an important role in manufacturing e-textiles and meanwhile is also the main source of printing defects.In this work,we report the preparation of fully flexible and washable textile-based conductive circuits with screen-printing method based on novel-developed UV-curing conductive ink that contains low temperature and fast cure features.This work systematically investigated the correlation between ink formulation,rheological properties,screen printability on fabric substrates,and the electrical properties of the e-textile made thereafter.The rheological behaviors,including the thixotropic behavior and oscillatory stress sweep of the conductive inks was found depending heavily on the polymer to diluent ratio in the formulation.Subsequently,the rheological response of the inks during screen printing showed determining influence to their printability on textile,that the proper control of ink base viscosity,recovery time and storage/loss modulus is key to ensure the uniformity of printed conductive lines and therefore the electrical conductivity of fabricated e-textiles.A formulation with 24 wt%polymer and 10.8 wt%diluent meets all these stringent requirements.The conductive lines with 1.0 mm width showed exceptionally low resistivity of 2.06×10-5Ωcm Moreover,the conductive lines presented excellent bending tolerance,and there was no significant change in the sample electrical resistance during 10 cycles of washing and drying processes.It is believed that these novel findings and the promising results of the prepared product will provide the basic guideline to the ink formulation design and applications for screen-printing electronics textiles.  相似文献   

20.
The novelty of this work is laboratory formulation of environmentally friendly, water-based silver inks adapted for screen printing. The challenge was also to elaborate inks that can withstand temperatures as high as 900 °C. Indeed, when printed on ceramic substrate, they were sintered at these high temperatures. These inks can replace conductive silver pastes present in the market, today, and containing irritant solvents such as terpineol and other aromatic solvents. Besides, screen printing is considered as an additive technique, thus allowing reducing wastes. Furthermore, only with 72.5% silver, considered as low content compared to commercial inks (≥75%), prepared inks presented good electrical resistivity, 23 nΩ m, close to that of bulk silver resistivity, 16 nΩ m. Formulation of silver inks with spherical particles, 2–3 μm mean diameter, was performed. The aim of the study was to determine silver content effect on pastes rheological behaviour, lines properties (width, thickness and roughness) and electrical properties. Therefore, rheological behaviour of inks was studied; in particular, Casson and Bingham models were applied in order to determine the yield stress. Viscosity evolution as a function of shear rate was also determined. Besides, the thixotropic behaviour of inks was highlighted. Inks were then screen printed on alumina sintered substrates and cured at different temperatures during 15 min. Topography measurements were performed. Line resistivity as small as 35 nΩ m was measured on cured lines. These inks, printed on ceramic tapes, can be used to print microwave transmission lines, for which resistivities lower than 1 mΩ m are requested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号