首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
为了实现一水硬铝石型铝土矿中铝硅矿物的有效分选,采用旋流分选方法研究了铝硅矿物的分选特性,对其旋流分选机理进行了初步分析.结果表明,增大底流口直径会使轴向零速包络面收缩,有利于提高底流中Al2O3的回收率和降低溢流A/S,但铝硅矿物旋流分选的精确度下降,底流A/S降低;给矿压强的改变基本上不会影响轴向零速包络面的空间位置,但在适宜的锥角条件下,增大给矿压强可对铝土矿的旋流分选产生有利影响,使分选效果得以改善.  相似文献   

2.
为了提高重介质旋流器对高含量重密度组分难选原煤的分选效率,设计了新型重介质旋流器模型装置,建立了颗粒在离心旋转流场中沉降分离数学模型,采用试验与理论分析相结合的方法研究新型重介质旋流器的分选特性,揭示高含量重密度组分难选煤分选特性随工艺参数的变化规律,探索影响新型重介质旋流器流场工作悬浮液动态稳定性的因素及重产物排料输运机制。研究结果表明,新型重介质旋流器分选高含量重密度组分煤时,底流重产物排料能力强、处理量大;离心旋流场中的悬浮液密度梯度分布小、密度相对均匀,底流与溢流密度差值较低,流场中悬浮液稳定性更强;入料的压力与悬浮液动态稳定性、分选精度及重产物排料效率直接相关,随着入料的压力增大,底流、溢流口排出悬浮液密度差值增大,可能偏差E值降低,分选精度提高,重产物排出量升高;当入料的压力为25 kPa时,实际分选密度为1.666 g/cm3,可能偏差E值为0.09 g/cm3,重产物产率为75.23%。本研究为高含量重密度组分煤的分选提供了新的思路。  相似文献   

3.
为了提高煤泥重介旋流器分选效果,丰富调控手段,以实验室磁力复合煤泥重介旋流器为研究对象,针对现阶段磁力旋流器励磁方式-空心线圈电磁场,以低碳钢为材料进行了附加磁路结构设计,实现了旋流器分选区磁场的靶向引导与强化。采用有限元模拟分析软件ANSYS对设计磁路进行磁场特性仿真分析,得到附加磁路结构可改变分选作用区磁场形态,提高磁场强度的结论,线圈中心最大磁场强度由无磁路时的4 102 A/m提高到大聚磁环作用下的4 930 A/m,内聚磁结构因其特殊的结构设计达到14 418 A/m。基于磁场仿真结果,对比进行了不同磁路磁场特性下纯磁铁矿粉介质分配试验和-3 mm粗煤泥重介质分选试验,得到不同磁场强度下纯磁铁矿粉底流、溢流分配规律及粗煤泥分选规律。试验结果表明,相比于无磁路磁场,外聚磁磁路结构不改变底流、溢流介质分配规律的总体趋势;内聚磁结构对磁场积聚作用强,磁场强度高,溢流悬浮液密度较空心线圈降低,底流悬浮液密度较空心线圈升高,精煤、尾煤灰分较空心线圈均有所上升,得到内聚磁结构可强化提高煤泥重介旋流器分选密度的结论。通过对磁力旋流器磁场附加磁路,为磁力旋流器磁场设计提供了一种新方法,为分选效果磁调控方法提供了一种新思路,对优化磁力旋流器磁场特性,充分发掘磁场在煤泥重介旋流器分选工艺的应用潜力、丰富复合力场分选理论具有一定的理论与实践意义。  相似文献   

4.
基于数值模拟对比了渐缩平底旋流器与复合锥角旋流器流场特性以探究平底结构对水力旋流器流场的影响。数值试验结果表明:两种水力旋流器压强分布和切向速度分布基本一致,而空气柱附近压强梯度存在差异;渐缩平底旋流器溢流管下方湍流强度较低而底流口附近则相反;渐缩平底旋流器柱-锥交界面的空气柱附近轴向速度较高,导致其分流比较低。实验室旋流分离试验表明:平底结构能有有效抑制溢流跑粗和底流夹细现象,显著提高分级效率,改善水力旋流器分离性能。  相似文献   

5.
利用RSM雷诺应力模型和VOF多相流模型,系统考察了溢流管直径对Φ50 mm水力旋流器流场稳定性的影响。通过对空气柱、零速包络面、短路流及湍流强度等流场特性的分析,确定了使流场稳定的最佳溢流管直径范围,并通过旋流分离物理试验进一步验证了该溢流管直径条件下获得的稳定流场能有效提高分离效率。研究结果表明,当溢流管直径过小时,空气柱会发生中断甚至不能完整形成,分选空间内部湍流强度较高,底流分流比较大,短路流量较小。随着溢流管直径的增加,逐渐形成上下贯通的空气柱,分选空间内部湍流强度降低,零速包络面的对称性增强,底流分流比逐渐降低,流场稳定性增强,从而分离性能增强。随着溢流管直径进一步增加,空气柱直径增大,短路流量增加,流场稳定性降低,从而分离效率下降。因此,针对所考察的Φ50 mm水力旋流器最佳的溢流管直径在0.30 D左右。   相似文献   

6.
通过采用水力旋流器,大锥角水介质旋流器与旋流重选柱对屯兰选煤厂选煤用磁铁矿粉进行分选对比试验,试验结果表明:随着单锥结构水介质旋流器底锥锥角增大,底流粗粒产品全铁品位提高,SiO2含量降低。对于粗粒级磁铁矿粉,复锥结构的旋流重选柱提铁降硅效果优于单锥120°锥角结构水介质旋流器。  相似文献   

7.
黄波  徐宏祥  陈晶晶  朱子祺 《煤炭学报》2019,44(4):1216-1223
重介质旋流器广泛应用于煤炭分选,分选过程十分复杂,试验测试研究重介质旋流器内部流场和颗粒运动特性费时费力,成本较高。随着数值计算技术的发展,国内外学者应用数值模拟方法研究旋流器内部的多相流流场。采用计算流体力学(CFD)与离散分析方法(DEM)耦合技术对重介质旋流器的分选过程进行数值模拟研究,为重介质旋流器的结构参数和操作参数的优化提供了一种新途径。用Fluent软件研究了旋流器内部悬浮液速度场、密度场、压力梯度场和黏度场,用EDEM软件研究了旋流分选过程中的煤粒运动行为及分选效果的评价。研究结果表明:悬浮液压力分布和压力梯度分布径向基本对称,溢流口和底流口处压力值最低。器壁沿径向形成了压力梯度,差值逐渐增大,空气柱边界处压力梯度最大;不同尺度的煤粒在旋流器内部的停留时间不同,相同密度的煤粒,粒度越小,停留时间越长。溢流中排出煤粒在旋流器中的停留时间明显长于从底流口排出的煤粒。溢流口排出的煤粒,密度越大,停留时间越长,底流口排出的煤粒,密度越大,停留时间越短。不同的旋流器结构参数对分选的影响程度不尽相同,其中溢流管直径的影响最为显著,溢流管直径超过500 mm时,不能形成完整的空气柱,无法分选。溢流管直径为300 mm时,分选效果较好;溢流管插入深度显著影响分选精度,插入深度为160 mm时,分选密度增大,细小高密度的煤颗粒将错配进入溢流,溢流管插入深度为320~800 mm时,分选密度接近悬浮液密度,分选指标E_p=0. 084~0. 100,分选效果较好。底流口直径对旋流器选精度影响较大,当底流口直径为272和306 mm时,分选密度与悬浮液密度接近,E_p值小于0.1,分选效果较好。圆柱段长度对于分选密度影响不明显。  相似文献   

8.
基于多溢流管旋流器的概念,结合前人对煤泥旋流重选柱的研究,开发了一种新型两段旋流器分选分级装置,一段溢流经分流后一部分直接由一段溢流管排出,另一部分沿切线由侧溢流出口进入二段旋流器进行再一次分级,可一次给料同时实现一段底流排矸,二段底流出精煤,一、二段溢流排细泥的目的。以麻家梁选煤厂粒度-3 mm煤泥为研究对象,分别对一段溢流管插入深度和侧溢流连接口径进行了试验研究。结果表明:以上试验条件对该装置的分选分级效果均有显著影响,要保证一段分选分级效果,溢流管插入深度不能超过套筒深度;过大的连接口径会造成二段底流精煤灰分偏高和二段旋流器分级性能下降。  相似文献   

9.
旋流器在分离过程中由于短路流的存在造成溢流跑粗现象,针对此问题提出一种筛孔型溢流管旋流器,并进行数值模拟和试验研究。结果表明:与圆柱型溢流管相比,筛孔型溢流管结构可延长颗粒在旋流器内的分离时间,使短路流重新进入外旋流进行充分分离,减少溢流跑粗现象。对比试验结果表明,与圆柱型溢流管旋流器相比较,采用筛孔型溢流管分离效率显著提高,-25 μm分级质效率由47.59%提高到58.00%,分级量效率由48.74%提高到60.08%,溢流产物更细,粗颗粒减少,溢流跑粗现象得到有效改善;随着溢流管开孔率增大,溢流产率提高,溢流和底流产品粒度均有变粗的趋势。  相似文献   

10.
通过采用水力旋流器,大锥角水介质旋流器与旋流重选柱对屯兰选煤厂选煤用磁铁矿粉进行分选对比试验,试验结果表明:随着单锥结构水介质旋流器底锥锥角增大,底流粗粒产品全铁品位提高,SiO2含量降低。对于粗粒级磁铁矿粉,复锥结构的旋流重选柱提铁降硅效果优于单锥120°锥角结构水介质旋流器。  相似文献   

11.
我国有大量高硅铝土矿资源,单一重选或浮选法往往难以高效且经济地回收铝土矿。本文以云南昭通地区一水硬铝石型高铝高硅铝土矿为研究对象,其含Al_2O_367.25%、SiO_213.50%、铝硅比(A/S)4.98,针对性地采用重选—浮选联合分级脱硅流程,即粗粒级螺旋溜槽重选脱硅富集,细粒级螺溜尾矿水力旋流器脱泥后再浮选脱硅,分别产出合格的粗粒重选精矿和细粒浮选精矿,获得产率70.62%、含Al_2O_371.62%、回收率75.43%、A/S 8.02的高品质铝土矿总精矿。本研究提出的重选—浮选联合分级脱硅工艺对类似高铝高硅铝土矿资源的经济高效选矿富集具有指导意义。  相似文献   

12.
为提高齐大山铁矿选矿厂[?]660 mm粗细分级水力旋流器的沉砂产率,从而增大后续重选作业的给矿量,基于数值模拟方法系统考察了水力旋流器结构参数对水力旋流器分离性能的影响。结果表明:增大沉砂口直径和柱段高度可以有效提高各粒级在沉砂中的分配率,而增加溢流管直径和小锥锥角则相反。基于数值试验结果进行了粗细分级水力旋流器工业试验,与原旋流器相比,优化后的旋流器沉砂产率提高了7.67个百分点,在保证分级效率的前提下可以有效提高沉砂产率。优化后的水力旋流器可以有效增加重选作业给矿量,并为同类型矿山的水力旋流器结构设计提供参考。  相似文献   

13.
低铝硅比堆积型细泥铝土矿活化浮选脱硅研究   总被引:1,自引:0,他引:1  
研究了低铝硅比堆积型细泥铝土矿的浮选脱硅, 结果表明: 堆积型铝土矿矿泥量大, 传统处理沉积型铝土矿的药剂制度对低铝硅比堆积型铝土矿分选效果不佳。采用新型活化剂TK, 大幅提高了铝矿物回收率, 成功实现了低铝硅比堆积型铝土矿的浮选脱硅。对于铝硅比为3.23的云南某堆积型铝土矿, 经浮选脱硅, 可以得到铝硅比为9.24、Al2O3回收率为69.91%的精矿。  相似文献   

14.
充气水力旋流器控制有用矿物过磨的研究   总被引:3,自引:0,他引:3  
褚良银  余仁焕 《矿冶》1996,5(4):35-40
鉴于充气水力旋流器内分级与浮选作用共存的特征,首次研究了采用改进型充气水力旋流器控制避免细磨回路中细粒级大密度有用矿物的过磨,探讨了该旋流器结构及操作参数的优化以及进料物化参数对旋流器分选性能的影响,提出了一个由充气水力旋流器和普通水力旋流器共同组成的、用于细磨回路中能控制细粒级大密度有用矿物过磨的新型分级系统。  相似文献   

15.
针对-8 mm+1 mm锰矿石分选工艺及设备不尽完善导致的分选困难等问题,提出了三产品重介旋流器分选回收精矿工艺。采用计算流体动力学软件对三产品重介旋流器内部流场及分离性能进行了数值模拟和 试验研究。模拟结果表明:在一定的入口速度区间内,三产品重介旋流器的流场比较稳定,切向速度和轴向速度均随着入口速度的增大而增大,所以适当增大入口速度,有利于锰矿石的分选。通过预测重介质悬浮液 密度场分布,获取了旋流场流动特征,为流场结构优化提供了理论依据。分选试验结果表明:采用无压给料重介质三产品旋流选矿工艺可以实现精矿与脉石的有效分选,分选效率显著提高。二段旋流器悬浮液密度为 2.6 g/cm3、压力为0.08 MPa时,精矿产率为36.00%。Mn在原矿中的品位为28.25%,分选后所得精矿中Mn品位达44.58%,回收率高达56.81%。本工艺较好地实现了难分选锰矿石的有效回收。 关键词 锰矿分选|三产品重介旋流器|数值模拟  相似文献   

16.
铝土矿碎解方式与铝硅矿物选择性分离   总被引:5,自引:2,他引:5  
铝土矿中一水硬铝石和含硅矿物的晶体结构差异导致了它们的可碎性差异。通过选用不同类型的磨矿介质进行铝土矿的选择性磨矿和磨矿产品中细粒级的浮选脱硅试验,讨论了铝土矿的选择性碎解对铝土矿选矿脱硅过程的影响。试验表明,对于不同磨矿介质,选择性碎解效果顺序依次为球+柱介质>球介质>棒介质;通过选择性碎解可得到部分较高铝硅比的粗粒级产品,同时细粒级铝土矿的铝硅浮选分离选择性也得到相应提高。因此,铝土矿的选择性碎解可提高铝土矿精矿的铝硅比和放粗精矿粒度,满足氧化铝生产对这两方面的要求。  相似文献   

17.
利用微泡浮选柱分选中低品位铝土矿的试验研究   总被引:3,自引:0,他引:3  
在研究矿石性质的基础上, 利用新型微泡浮选柱对河南某中低铝硅比铝土矿进行了实验室分选研究, 考察了捕收剂、抑制剂、充气量和淋洗水对分选结果的影响。闭路试验结果表明, 在优化条件下, 采用新型微泡浮选柱可得到精矿铝硅比为10.26, 氧化铝回收率87.24%的实验指标。试验证明新型微泡浮选柱对细粒铝土矿分选有良好的应用前景。  相似文献   

18.
宋涛  陈献梅 《矿冶》2017,26(3):19-23
以云南高铁沉积型铝土矿为研究对象开展选矿试验研究工作。铝土矿原矿Al_2O_3品位45.58%,SiO_2品位8.73%,TFe品位19.78,A/S为5.22。在研究了该矿石化学成分与矿物组成的基础上,进行了磁选脱铁、正浮选一水硬铝石的试验研究,最终得到Al_2O_3品位55.38%、回收率达到69.17%的精矿,TFe品位10.73,A/S为9.87。研究成果表明,高铁沉积型铝土矿通过磁选—浮选工艺可以实现脱铁提铝降硅的目的。  相似文献   

19.
尾矿堆坝水力旋流器性能优化实验研究   总被引:1,自引:0,他引:1  
由旋流器分选机理推求了旋流器颗粒分选时,能耗损失和临界分选粒径的计算公式。参考国外小型旋流器分级室内实验,在堆坝现场对旋流器性能进行优化实验。不仅满足生产要求、提高底流排砂率,而且对推求的公式进行验证。实验数据和公式计算值吻合较好。  相似文献   

20.
针对土城矿选煤厂由于长期生产以来采用的介质分选密度低造成的一系列问题,通过提高主洗旋流器和煤泥重介旋流器的分选密度提高了精煤产率和浮选尾煤的灰分,在系统中提前回收部分煤泥。通过干燥系统的改造,使煤泥系统全部回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号