首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The radiosynthesis of [18F]DCFPyL on 2 distinct automated platforms with full regulatory compliant quality control specifications is described. The radiotracer synthesis was performed on a custom‐made radiofluorination module and the Sofie Biosciences ELIXYS. The radiofluorination module synthesis was accomplished in an average of 66 minutes from end of bombardment with an average specific activity at end of synthesis (EOS) of 4.4 TBq/μmol (120 Ci/μmol) and an average radiochemical yield of 30.9% at EOS. The ELIXYS synthesis was completed in an average of 87 minutes with an average specific activity of 2.2 TBq/μmol (59.3 Ci/μmol) and an average radiochemical yield of 19% at EOS. Both synthesis modules produced large millicurie quantities of [18F]DCFPyL while conforming to all standard US Pharmacopeia Chapter <823> acceptance testing criteria.  相似文献   

2.
Bruton's tyrosine kinase (BTK) is a key component in the B-cell receptor signaling pathway and is consequently a target for in vivo imaging of B-cell malignancies as well as in multiple sclerosis (MS) with positron emission tomography (PET). A recent Phase 2b study with Sanofi's BTK inhibitor, Tolebrutinib (also known as [a.k.a.] SAR442168, PRN2246, or BTK'168) showed significantly reduced disease activity associated with MS. Herein, we report the radiosynthesis of [11C]Tolebrutinib ([11C] 5 ) as a potential PET imaging agent for BTK. The N-[11C]acrylamide moiety of [11C] 5 was labeled by 11C-carbonylation starting from [11C]CO, iodoethylene, and the secondary amine precursor via a novel palladium-NiXantphos - mediated carbonylation protocol, and the synthesis was fully automated using a commercial carbon-11 synthesis platform (TracerMaker™, Scansys Laboratorieteknik). [11C] 5 was obtained in a decay-corrected radiochemical yield of 37 ± 2% (n = 5, relative to starting [11C]CO activity) in >99% radiochemical purity, with an average molar activity of 45 GBq/μmol (1200 mCi/μmol). We envision that this methodology will be generally applicable for the syntheses of labeled N-acrylamides.  相似文献   

3.
5‐((1‐[11C]‐methyl‐2‐(S)‐pyrrolidinyl)methoxy)‐2‐chloro‐3‐((E)‐2‐(2‐fluoropyridin‐4‐yl)‐vinyl)pyridine ([11C]‐FPVC) was synthesized from [11C]‐methyl iodide and the corresponding normethyl precursor. The average time of synthesis, purification, and formulation was 42 min with an average non‐decay‐corrected radiochemical yield of 19%. The average specific radioactivity was 359 GBq/µmol (9691 mCi/µmole) at end of synthesis (EOS). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper we present the radiochemical synthesis of the novel compound [N‐methyl‐11C]methylene blue. The synthesis of [N‐methyl‐11C]methylene blue was accomplished by means of 11C‐methylation of commercially available Azure B using [11C]methyl trifluoromethanesulfonate ([11C]methyl triflate). Following purification [N‐methyl‐11C]methylene blue was obtained with a radiochemical purity greater than 97% in a 4–6% decay corrected radiochemical yield. The synthesis was completed in an average of 35 min following the end of bombardment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The highly potent serotonin (5-HT) uptake blocker, McN-5652-Z (trans-1,2,3,5,6,10b - hexahydro - 6 - [4 - (methylthio)phenyl] pyrrolo - [2,1-a]-isoquinoline) was labeled with 11C for studying serotonin uptake sites using positron emission tomography (PET). [11C]McN-5652-Z was synthesized by S-methylation of the normethyl precursor with [11C]iodomethane in DMF at 30 - 35° C. The radiosyntheses including purification by HPLC and formulation for injection were completed in an average of 16 minutes following the end of bombardment (E.O.B.) with an overall radiochemical yield of 12%. The average specific activity determined at the end of synthesis (E.O.S.) was approximately 4250 mCi/μmole; this corresponds to approximately 7350 mCi/μmole at E.O.B. [11C]McN-5655-Z, a less potent blocker, was also prepared by the same procedure.  相似文献   

6.
The development of a labeling method for secondary amines with [2‐11C]acetone is described since the R2N‐isopropyl moiety is present in many biologically active compounds. The influence of a variety of parameters (e.g. reagents, solvents, temperature, and time) on the reaction outcome is discussed. Under the optimal reaction conditions, [11C]1‐isopropyl‐4‐phenylpiperazine ([11C]iPPP) was synthesized from [2‐11C]acetone and 1‐phenylpiperazine in a decay‐corrected radiochemical yield of 72%. The overall synthesis time, from EOB to HPLC analysis of [11C]iPPP, was 20 min. Specific activity was 142–208 GBq/μmol at the end of synthesis. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The multitude of biologically active compounds requires the availability of a broad spectrum of radiolabeled synthons for the development of positron emission tomography (PET) tracers. The aim of this study was to synthesize 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol and investigate the use of these reagents in further radiosynthesis reactions. 2‐Methyl‐1‐[11C]propanol was obtained with an average radiochemical yield of 46 ± 6% d.c. and used with fluorobenzene as starting material. High conversion rates of 85 ± 4% d.c. could be observed with HPLC, but large precursor amounts (32 mg, 333 μmol) were needed. 1‐Iodo‐2‐[11C]methylpropane was synthesized with a radiochemical yield of 25 ± 7% d.c. and with a radiochemical purity of 78 ± 7% d.c. The labelling agent 1‐iodo‐2‐[11C]methylpropane was coupled to thiophenol, phenol and phenylmagnesium bromide. Average radiochemical conversions of 83% d.c. for thiophenol, 40% d.c. for phenol, and 60% d.c. for phenylmagnesium bromide were obtained. In addition, [11C]2‐methyl‐1‐propyl phenyl sulphide was isolated with a radiochemical yield of 5 ± 1% d.c. and a molar activity of 346 ± 113 GBq/μmol at the end of synthesis. Altogether, the syntheses of 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol were achieved and applied as proof of their applicability.  相似文献   

8.
Carbon‐11 labelled 4‐(N‐2,5‐dihydroxybenzyl)amino methyl benzoate (AG957), a potential radiotracer for imaging bcr–abl receptors was synthesized. [11C]AG957 was prepared by labelling 4‐aminobenzoic acid using [11C]CH3I, which affords the corresponding [11C] methyl ester in excellent yields. Subsequent condensation of the amino group with 2,5‐dihydroxy‐benzaldehyde formed the respective Schiff base. Reduction of this compound with NaBH3CN gave [11C]AG957 in overall decay corrected radiochemical yield of 65–75% (based on 11CH3I) with an average specific radioactivity of 40 GBq/μmol (1.1 Ci/μmol). The total synthesis time from EOB including formulation was 45 min. At physiological pH, the compound was found to be sufficiently stable for in vitro and in vivo investigations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
5‐(2‐Phenylethynyl)pyridine‐3‐[11C]carbonitrile ([11C]LY2232645), a metabotropic glutamate 5 receptor (mGluR5) antagonist, was synthesized by a no‐carrier‐added nucleophilic halogen displacement with [11C]copper(I) cyanide. The average radiochemical yield was 2.5%, and the average specific activity was 1365 mCi/µmol at end‐of‐synthesis. The total time of synthesis, purification, and formulation was 26 min. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Histone deacetylases (HDACs) mediate epigenetic mechanisms implicated in a broad range of central nervous system dysfunction, including neurodegenerative diseases and neuropsychiatric disorders. [11C]Martinostat allows in vivo quantification of class I/IIb HDACs and may be useful for the quantification of drug–occupancy relationship, facilitating drug development for disease modifying therapies. The present study reports a radiosynthesis of [11C]martinostat using [11C]methyl triflate in ethanol, as opposed to the originally described synthesis using [11C]methyl iodide and DMSO. [11C]Methyl triflate is trapped in a solution of 2 mg of precursor 1 dissolved in anhydrous ethanol (400 μl), reacted at ambient temperature for 5 min and purified by high-performance liquid chromatography; 1.5–1.8 GBq (41–48 mCi; n = 3) of formulated [11C]martinostat was obtained from solid-phase extraction using a hydrophilic–lipophilic cartridge in a radiochemical yield of 11.4% ± 1.1% (nondecay corrected to trapped [11C]MeI), with a molar activity of 369 ± 53 GBq/μmol (9.97 ± 1.3 Ci/μmol) at the end of synthesis (40 min) and validated for human use. This methodology was used at our production site to produce [11C]martinostat in sufficient quantities of activity to scan humans, including losses incurred from decay during pre-release quality control testing.  相似文献   

11.
We have developed 8-amino-3-(2S,5R-dimethyl-1-piperidyl)-[1,2,4]triazolo[4,3-a]pyrazine-5-[11C]carbonitrile ([11C]MTP38) as a positron emission tomography (PET) tracer for the imaging of phosphodiesterase 7. For the fully automated production of [11C]MTP38 routinely and efficiently for clinical applications, we determined the radiosynthesis procedure of [11C]MTP38 using [11C]hydrogen cyanide ([11C]HCN) as a PET radiopharmaceutical. Radiosynthesis of [11C]MTP38 was performed using an automated 11C-labeling synthesizer developed in-house within 40 min after the end of irradiation. [11C]MTP38 was obtained with a relatively high radiochemical yield (33 ± 5.5% based on [11C]CO2 at the end of irradiation, decay-corrected, n = 15), radiochemical purity (>97%, n = 15), and molar activity (47 ± 12 GBq/μmol at the end of synthesis, n = 15). All the results of the quality control (QC) testing for the [11C]MTP38 injection complied with our in-house QC and quality assurance specifications. We successfully automated the radiosynthesis of [11C]MTP38 for clinical applications using an 11C-labeling synthesizer and sterile isolator. Taken together, this protocol provides a new radiopharmaceutical [11C]MTP38 suitable for clinical applications.  相似文献   

12.
Neprilysin, also known as neutral endopeptidase, is a cell surface membrane metalo-endopeptidase that cleaves various peptides. Altered neprilysin expression has been correlated with various cancers and cardiovascular diseases. In this work, we present the radiosynthesis of the novel O-11C-methylated derivative of LBQ657 (a potent neprilysin inhibitor). (2R,4S)-5-(Biphenyl-4-yl)-4-[(3-carboxypropionyl)amino]-2-methylpentanoic acid [11C]methyl ester ([11C]MeOLBQ) is an analog of sacubitril where the alkyl ester is a 11C-methyl instead of an ethyl. [11C]MeOLBQ was produced in a one-pot two-step synthesis. The O-11C-methylation of the pentanoic acid part was done with [11C]methyl triflate followed by the deprotection of the tert-butyl ester precursor in acidic conditions. [11C]MeOLBQ ([11C] 7 ) was produced in 9.5 ± 2.5% RCY (25 ± 6% decay-corrected from [11C]CO2, n = 3) high molar activity 348 ± 100 GBq/μmol (9425 ± 2720 mCi/μmol) at EOS, in high chemical (>95%) and radiochemical (>99%) purities. The total synthesis time including HPLC purification and reformulation was 29 minutes. To our knowledge, this is the first PET-labeled analog of the clinically used NEP inhibitor sacubitril.  相似文献   

13.
The false adrenergic neurotransmitter [11C]meta‐hydroxyephedrine ([11C]HED) is currently the PET tracer of choice for assessment of myocardial sympathetic innervation. The molecule is metabolised in the 4‐position of the aromatic ring. The resulting radiolabelled metabolites need to be measured in order to obtain an arterial input function. Our aim was the development of a PET tracer with an increased metabolic stability relative to [11C]HED. We selected 4‐methylmetaraminol as a candidate molecule for radiolabelling with 11C (t1/2 20.4 min). Our radiosynthetic approach towards 4‐[11C]methylmetaraminol involved a palladium‐catalyzed cross‐coupling reaction of a protected 4‐trimethylstannyl derivative of metaraminol with [11C]methyl iodide followed by removal of the protective groups. 4‐[11C]methylmetaraminol was obtained in a final decay‐corrected radiochemical yield of 20–25% within a synthesis time of 60–80 min. The specific radioactivity at the end of the synthesis ranged from 18–37 to GBq/μmol. The unlabelled reference molecule, 4‐methylmetaraminol, was prepared in a 5‐step synthesis starting from metaraminol. A biological evaluation of 4‐[11C]methylmetaraminol is in progress and the results will be reported elsewhere. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
We demonstrated the synthesis of carbon‐11 labeled 17‐α‐hydroxy‐11‐β‐/4‐/[methyl]‐[1‐methylethyl]‐aminophenyl/‐17α‐[prop‐1‐ynyl]esta‐4‐9‐diene‐3‐one (RU40555), a selective glucocorticoid receptor (GR) antagonist, and examined the in vivo profile of [11C]RU40555. [11C]RU40555 was synthesized by direct N‐methylation with [11C]CH3OTf at 60°C for 5 min and an injectable solution of [11C]RU40555 was obtained in 31 min at the end of bombardment. The decay‐corrected radiochemical yield was 19%, the specific radioactivity was 57.5±14.0 GBq/µmol, and the radiochemical purity was more than 99% as determined by HPLC. In rat experiments, the effects of adrenalectomy (ADX) on brain accumulation of [11C]RU40555 were examined. ADX significantly decreased plasma corticosterone levels, and significantly increased brain accumulation of [11C]RU40555. We succeeded in developing a rapid automated synthesis method for [11C]RU40555, a GR antagonist, and showed [11C]RU40555 had a potential as a PET tracer for mapping GR. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
We report an efficient protocol for the radiosynthesis of diastereomerically pure (E)‐[11C]ABP688, a positron emission tomography (PET) tracer for metabotropic glutamate type 5 (mGlu5) receptor imaging. The protocol reliably provides sterile and pyrogen‐free formulation of (E)‐[11C]ABP688 suitable for preclinical and clinical PET imaging with >99% diastereomeric excess (d.e.), >99% overall radiochemical purity (RCP), 14.9 ± 4.3% decay‐corrected radiochemical yield (RCY), and 148.86 ± 79.8 GBq/μmol molar activity in 40 minutes from the end of bombardment.  相似文献   

16.
To produce the radioligand [Nmethyl11C]flumazenil at very high specific radioactivity for our small animal imaging studies we have developed procedures for its rapid synthesis, purification and analysis. We have developed ‘micro‐reactor’ apparatus which are assembled from analytical HPLC guard columns packed with stainless steel powder for performing the carbon‐11 methylation reactions. These highly efficient reaction columns enable high radiochemical yields to be obtained with very small amounts of precursor (20–40 µg). The very small amount of reactants used enables the use of small analytical‐sized HPLC columns for the rapid purification of the radioligand. Combining these techniques has enabled us to consistently prepare [Nmethyl11C]flumazenil from [11C]iodomethane with radiochemical yields of 80% (decay corrected). This results in 8–10 GBq of [Nmethyl11C]flumazenil at very high specific radioactivities of 520–600 GBq/µmol at the end‐of‐synthesis. The total preparation time from end‐of‐bombardment of cyclotron‐produced [11C]carbon dioxide to end‐of‐synthesis is 20 min. A quality control method based on very rapid HPLC analysis (completed within 2 min) on a micro‐analytical HPLC column has also being developed to reduce the time from the end‐of‐synthesis to injection for imaging. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
(±) 3‐(6‐Nitro‐2‐quinolinyl)‐[9‐methyl‐11C]‐3,9‐diazabicyclo‐[4.2.1]‐nonane ([11C‐methyl]NS 4194), a selective serotonin reuptake inhibitor (SSRI), was synthesised within 35 min after end of bombardment with a radiochemical purity >98%. It had a decay‐corrected radiochemical yield of 7% after preparative HPLC, and a specific radioactivity around 37 GBq/μmol (EOS). A typical production starting with 40 GBq [11C]CO2 yielded 800 MBq of radiolabelled [11C‐methyl]NS 4194 in a formulated solution. The synthesis of the precursor to [11C‐methyl]NS 4194, (±) 9‐H‐3‐[6‐nitro‐(2‐quinolinyl)]‐3,9‐diazabicyclo‐[4.2.1]‐nonane, as well as the unlabelled analogue (±) 9‐methyl 3‐[6‐nitro‐(2‐quinolinyl)]‐3,9‐diazabicyclo‐[4.2.1]‐nonane (NS 4194), are also described. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we describe the radiosynthesis of the compound (E)‐2,3′,4,5′‐tetramethoxy[2‐11C]stilbene, a potential, universal tumour positron emission tomography imaging agent. The production of (E)‐2,3′,4,5′‐tetramethoxy[2‐11C]stilbene was carried out via 11C‐methylation of (E)‐2‐(hydroxy)‐3′,4,5′‐trimethoxystilbene by using [11C]methyl trifluoromethanesulfonate ([11C]methyl triflate). (E)‐2,3′,4,5′‐tetramethoxy[2‐11C]stilbene was obtained with a radiochemical purity greater than 95% in a 20 ± 2% decay‐corrected radiochemical yield, based upon [11C]carbon dioxide. Synthesis, purification and formulation were completed on an average of 30 min following the end of bombardment (EOB). The specific radioactivity obtained was 1.9 ± 0.6 GBq/µmol at EOB. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The 11C‐labelling of the taxane derivative BAY 59‐8862 ( 1 ), a potent anticancer drug, was carried out as a module‐assisted automated multi‐step synthesis procedure. The radiotracer [11C]1 was synthesized by reacting [1‐11C]acetyl chloride ( 6 ) with the lithium salt of the secondary hydroxy group of precursor 3 followed by deprotection. After HPLC purification of the final product [11C]1 , its solid‐phase extraction, formulation and sterile filtration, the decay‐corrected radiochemical yield of [11C]1 was in the range between 12 and 23% (related to [11C]CO2; n=10). The total synthesis time was about 54 min after EOB. The radiochemical purity of [11C]1 was greater than 96% and the chemical purity exceeded 80%. The specific radioactivity was 16.8±4.7 GBq/µmol (n=10) at EOS starting from 80 GBq of [11C]CO2. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐[methyl11C]thymine ([11C]FMAU) [11C]‐ 1 was synthesised via a palladium‐mediated Stille coupling reaction of 1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐5‐(trimethylstannyl)uracil 2 with [11C]methyl iodide in a one‐pot procedure. The reaction conditions were optimized by screening various catalysts and solvents, and by altering concentrations and reaction temperatures. The highest yield was obtained using Pd2(dba)3 and P(o‐tolyl)3 in DMF at 130°C for 5 min. Under these conditions the title compound [11C]‐ 1 was obtained in 28±5% decay‐corrected radiochemical yield calculated from [11C]methyl iodide (number of experiments=7). The radiochemical purity was >99% and the specific radioactivity was 0.1 GBq/μmol at 25 min after end of bombardment. In a typical experiment 700–800 MBq of [11C]FMAU [11C]‐ 1 was obtained starting from 6–7 GBq of [11C]methyl iodide. A mixed 11C/13C synthesis to yield [11C]‐ 1 /(13C)‐ 1 followed by 13C‐NMR analysis was used to confirm the labelling position. The labelling procedure was found to be suitable for automation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号