首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 968 毫秒
1.
新金色分枝杆菌(Mycobacterium neoaurum)能将植物甾醇转化为药物中间体4-烯-雄甾-3,17-二酮(AD)和1,4-二烯-雄甾-3,17-二酮(ADD),其中3-甾酮-△1-脱氢酶(KSDD)是AD转化为ADD的关键酶.本实验室在筛菌过程中筛选到一株能将甾醇转化为AD(D)的菌株,经鉴定为M.neo...  相似文献   

2.
为进一步确定黑曲霉菌株TCCC41650的生物转化能力,以雄甾-4-烯-3,17-二酮(Androstenedione)为底物,利用黑曲霉菌株TCCC41650进行催化,产物经纯化、重结晶后,通过单晶衍射鉴定为16β-羟基雄甾-4-烯-3,17-二酮。转化条件为:培养液pH 6.0,乙醇添加量为2%,投料浓度为1‰时,72 h转化率为85.8%。目前甾体研究领域对于C16β-羟基化的微生物转化未见报道,研究结果为C16β-羟基甾体药物的研发奠定了基础。  相似文献   

3.
考察了β-环糊精(β-cyclodextrin, CD)对雄甾-4-烯-3,17-二酮(androst-4-ene-3,17-diorle,AD)在水中的溶解度及微生物对其11а羟化反应的影响,结果表明β-环糊精能显著提高底物AD在发酵培养基中的溶解度,增溶效果优于有机溶剂.在底物投料浓度0.2%(w/v)时,与4%无...  相似文献   

4.
雄甾-4-烯-3,17-二酮(4AD)是甾体化合物合成过程中的关键中间体,其羟化产物通常具有良好的药理活性或作为工业生产甾体药物的重要中间体。利用粉红单端孢Trichothecium roseum对4AD进行生物转化,从其发酵提取物中共分离鉴定了3个4AD羟基化产物:6β-羟基-雄甾-4-烯-3,17-二酮(6β-OH-4AD,1),14α-羟基-雄甾-4-烯-3,17-二酮(14α-OH-4AD,2),6β,14α-双羟基-雄甾-4-烯-3,17-二酮(6β,14α-di-OH-4AD,3),表明T. roseum对4AD的C-6β位和C-14α位具有较强的羟化能力,其中14α-OH-4AD(2)可作为合成强心甾类化合物毛地黄毒素的重要中间体,6β,14α-di-OH-4AD(3)可作为合成具有抗肿瘤活性的14α-羟基-雄甾-4-烯-3,6,17-三酮的重要中间体。提供了1株能够高效制备活性甾醇中间体14α-OH-4AD和6β,14α-di-OH-4AD的菌株,同时可为研究其他甾醇药物奠定基础。  相似文献   

5.
雄甾-4-烯-3,17-双酮(简称4AD)是甾体药物的重要中间产物,其11α羟化产物可制成治疗心血管疾病的药物。通过对30株不同种属真菌转化4AD能力的筛选,获得球孢白僵菌(Beauveria bassiana)QY2A对4AD有高效C11α羟化能力,得到目标产物C11α-羟基雄甾-3,17-双酮(简称11α-OH-4AD)。另对该菌株的转化条件进行优化,结果表明:初始pH值6.0,温度28℃,转速180r/min,转化时间60h,助溶剂甲醇终浓度和底物浓度分别为2.5%和2.5g/L时,11α-OH-4AD的转化率为65%,比未优化的转化率提高了51.2%。  相似文献   

6.
9α-羟基雄甾-4-烯-3,17-二酮(9-OH-AD)是一种重要的甾体药物中间体,可以用来制备β-甾酮,地塞米松和其他类固醇化合物。3-甾酮9α-羟基化酶(KSH)是由两个亚基即末端氧化亚基(KshA)和铁氧还蛋白还原亚基(KshB)构成的。在本研究中,人工合成了来源于分枝杆菌Mycobacterium sp.Strain VKM Ac-1817D的kshA和kshB基因,通过优化表达载体促进了KshA和KshB在E.coli BL21(DE3)中的可溶性表达,并探究了催化体系中KSH还原亚基和氧化亚基的最适添加比例。此外,KSH转化雄甾-4-烯-3,17-二酮(AD)为9-OH-AD的过程中需要辅酶NADH。本研究构建了羟基化反应与利用葡萄糖脱氢酶(GDH)的NADH辅酶再生反应的偶联体系。为了进一步提高转化效率,本研究进行了转化条件的优化,并采取了分批补料的策略,最终9-OH-AD产量为4.78 g/L,转化率为96.7%。此种酶介导的转化生产9-OH-AD的方法为甾体药物生产提供了一种环境友好和经济实用型的新策略。  相似文献   

7.
从保藏的200多株菌中筛选出1株高效转化植物甾醇为4-烯-雄甾-3,17-二酮和1,4-二烯-雄甾-3,17-二酮的菌株,并对该菌进行了形态、生理生化的研究。结果发现菌株ST06可以利用多种碳源,可以水解淀粉,但不利用纤微素。用16SrDNA的方法对其进行鉴定,发现与Bacillus属Bacillus amyloiquefaciens的相似性最高,达到99.9%,将该菌株命名为Bacillus amyloiquefaciens ST06。该菌在培养温度30℃,pH7.0,转速220r/min,转化时间7d,底物添加量为0.3%时,ADD与AD的总得率高达40%以上,此时底物转化率高达93.7%。  相似文献   

8.
采用紫外线、亚硝基胍复合诱变雄甾-4-烯-3,17-二酮(AD)和雄甾-1,4-二烯-3,17-二酮(ADD)的转化产生菌Mycobacterium sp.,结合平板筛选,获得一株遗传性状稳定单产ADD的突变菌株Mycobacterium sp.-11,其ADD质量浓度达到1246ms/L,比原始菌株(484mg/L)提高了150%,经初步优化后发酵液中ADD最高达到1430mg/L,发酵液中ADD质量占ADD、AD两产物质量总和的比例由70%提高到99.1%。  相似文献   

9.
总状毛霉对4-烯-3-酮甾体的生物转化研究   总被引:6,自引:0,他引:6  
从土样中筛选到一株能转化甾体的菌株,经形态观察,鉴定为总状毛霉(Mucor racemosus)。首次利用该菌株对4-烯-3-酮类甾体衍生物进行生物转化,目的是合成具有潜在活性的羟基类4-烯-3-酮衍生物。转化条件为27℃,220r/min振荡培养4d。转化产物经乙酸乙酯萃取,用硅胶柱层析法分离,通过红外、质谱和核磁分析确定了甾体转化产物的化学结构。黄体酮生物转化得到的产物是14α-羟基-4-孕甾烯-3,20-二酮和7α,14α-二羟基-4-孕甾烯-3,20-二酮;4-雄烯二酮的转化产物是14α-羟基-雄甾-4-烯-3,17-二酮1、4α,17β-二羟基-雄甾-4-烯-3-酮和6α,17β-二羟基-雄甾-4-烯-3-酮。研究结果表明总状毛霉具有转化甾体的能力,对4-烯-3-酮类甾体进行生物转化的主要产物是14α-羟基甾体衍生物。  相似文献   

10.
利用分枝杆菌对植物甾醇进行边链降解可产生4-AD(4-烯-雄甾-3,17-二酮)和ADD(1,4-二烯-雄甾-3,17-二酮),ADD由4-AD在C1,2位脱氢酶(ksdD)作用下脱氢产生,这两种物质在化学结构上高度相似,难以分离。本文首先扩增出部分ksdD基因,大小为631bp,并以此为基础构建打靶载体pUC19-MK。将pUC19-MK电转分枝杆菌感受态,通过同源重组敲除分枝杆菌染色体上正常的ksdD基因,使C1,2位脱氢酶失活,以达到4-AD大量积累的目的。结果通过初筛筛选出5株转化子,进行甾体转化实验,发酵144h时,1号转化子的4-AD生成率达到17.52%,比出发菌株提高了192%,而此时ADD的生成率仅为6.12%,比出发菌株降低了89.9%。  相似文献   

11.
J J Sheets  R W Estabrook 《Biochemistry》1985,24(23):6591-6597
To investigate the potential interaction of the various pathways of androgen hydroxylation, we have conducted studies to identify the profile of products formed during the time course of metabolism of androst-4-ene-3,17-dione (AD). Incubates containing AD, NADPH, and liver microsomes (from rats pretreated with phenobarbital) were sampled at times between 0 and 20 min and the metabolites resolved by reverse-phase (C18) high-performance liquid chromatography. By this method, the pattern of formation and of utilization of eight major primary and secondary metabolites of AD was determined. We report here the formation of two previously unidentified major metabolites of AD: 6 beta,16 alpha-dihydroxyandrost-4-ene-3,17-dione and 6 beta,16 beta-dihydroxyandrost-4-ene-3,17-dione. We propose that liver microsomal cytochromes P-450 can sequentially hydroxylate a single molecule of AD at multiple sites. These hydroxylase activities are presumably a result of multiple cytochrome P-450 isozymes acting on AD resulting in a transient time course for the appearance of some monohydroxylated metabolites. In addition, a unidirectional conversion of the metabolite 16 alpha-hydroxyandrost-4-ene-3,17-dione to 16 beta-hydroxyandrost-4-ene-3,17-dione is described. Evidence is provided to support the role of cytochrome P-450 in catalyzing this reaction.  相似文献   

12.
9 alpha-Hydroxylation of 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) is catalysed by 3-ketosteroid 9 alpha-hydroxylase (KSH), a key enzyme in microbial steroid catabolism. Very limited knowledge is presently available on the KSH enzyme. Here, we report for the first time the identification and molecular characterization of genes encoding KSH activity. The kshA and kshB genes, encoding KSH in Rhodococcus erythropolis strain SQ1, were cloned by functional complementation of mutant strains blocked in AD(D) 9 alpha-hydroxylation. Analysis of the deduced amino acid sequences of kshA and kshB showed that they contain domains typically conserved in class IA terminal oxygenases and class IA oxygenase reductases respectively. By definition, class IA oxygenases are made up of two components, thus classifying the KSH enzyme system in R. erythropolis strain SQ1 as a two-component class IA monooxygenase composed of KshA and KshB. Unmarked in frame gene deletion mutants of parent strain R. erythropolis SQ1, designated strains RG2 (kshA mutant) and RG4 (kshB mutant), were unable to grow on steroid substrates AD(D), whereas growth on 9 alpha-hydroxy-4-androstene-3,17-dione (9OHAD) was not affected. Incubation of these mutant strains with AD resulted in the accumulation of ADD (30-50% conversion), confirming the involvement of KshA and KshB in AD(D) 9 alpha-hydroxylation. Strain RG4 was also impaired in sterol degradation, suggesting a dual role for KshB in both sterol and steroid degradation.  相似文献   

13.
The inclusion complex of hydroxypropyl-beta-cyclodextrin (HBbetaCD) and phytosterols (PSs) was prepared and characterized by thermogravimetric analysis (TGA) and infrared (IR) spectroscopy. Biotransformation of the inclusion complex of phytosterols and hydroxypropyl-beta-cyclodextrin (PSs-HBbetaCD) by Mycobacterium neoaurum to 1,4-androstadiene-3,17-dione and 4-androstene-3,17-dione [AD(D)] was studied. The TGA and IR results indicated that the thermal stability of PSs was improved in the complex with HBbetaCD. Biotransformation improved the solubility of PSs in the aqueous medium a lot because the AD(D) production was increased remarkably compared with the control, but growth of the bacteria was inhibited in the presence of HBbetaCD. The optimal inclusion ratio, ultrasonic treating time, dosage, and time of addition of PSs-HBbetaCD complexe were found to be 2:1, 10 min, 1.5 g/30 ml medium, and 48 h after incubation, respectively. This inclusion technique not only increased the availability of the substrates for the microorganisms, but also the capability of these microorganisms to produce AD(D) from PSs.  相似文献   

14.
R A Meigs 《Life sciences》1990,46(5):321-327
All oxidative functions of aromatase, i.e., estrogen production, 19-oxygenated androgen production and 7-ethoxycoumarin deethylation, were inhibited in parallel in placental microsomes from non-smokers by the mechanism-based, time-dependent inactivators (suicide substrates) 10 beta-(2-propynyl)estr-4-ene-3,17-dione and 4-hydroxyandrost-4-ene-3,17-dione. In contrast, the aromatase suicide substrate androst-4-ene-3,6,17-trione had little or no effect on the conversion of androst-4-ene-3,17-dione to 19-hydroxyandrost-4-ene-3,17-dione or on the conversion of the latter to 3,17-dioxoandrost-4-en-19-al while severely limiting the capacity for estrogen production from androst-4-ene-3,17-dione and 19-hydroxyandrost-4-ene-3,17-dione in such microsomal preparations. Androst-4-ene-3,6,17-trione, therefore, appears to uncouple the 19-hydroxylation of androgens from estrogen synthesis. This agent also produced only a minimal inhibition of 7-ethoxycoumarin deethylation, indicating that this major constitutive transformation of a xenobiotic chemical is associated with the steroid 19-hydroxylating function of the aromatase system.  相似文献   

15.
Cyclodextrins (CDs) can improve productivity in the biotransformation of steroids by increasing conversion rate, conversion ratio, or substrate concentration. However, little is known of the proportion of products formed by multi-catabolic enzymes, e.g., via sterol side chain cleavage. Using three strains with different androst-1,4-diene-3,17-dione (ADD) to androst-4-ene-3,17-dione (AD) ratios, Mycobacterium neoaurum TCCC 11028 (MNR), M. neoaurum TCCC 11028 M1 (MNR M1), and M. neoaurum TCCC 11028 M3 (MNR M3), we found that hydroxypropyl-β-cyclodextrin (HP-β-CD) can appreciably increase the ratio of ADD to AD, the reaction rate, and the molar conversion. In the presence of HP-β-CD, conversion of 0.5?g/L of phytosterol (PS) was 2.4, 2.4, and 2.3 times higher in the MNR, MNR M1, and MNR M3 systems, respectively, than in the controls. The ADD proportion increased by 38.4, 61.5, and 5.9?% compared with the control experiment, which resulted in a strong shift in the ADD/AD ratio in the ADD direction. Our results imply that the three PS-biotransforming strains cause efficient side chain degradation of PS, and the increased conversion of PS when using HP-β-CD may be associated with the higher PS concentration in each case. A similar solubilizing effect may not induce a prominent influence on the ADD/AD ratio. However, the different activities of the Δ(1)-dehydrogenase of PS-biotransforming strains result in different incremental percentage yields of ADD and ADD/AD ratio in the presence of HP-β-CD.  相似文献   

16.
P S Furth  C H Robinson 《Biochemistry》1989,28(3):1254-1259
Aromatase is a cytochrome P-450 enzyme involved in the conversion of androst-4-ene-3,17-dione to estrogen via sequential oxidations at the 19-methyl group. Previous studies from this laboratory showed that 19,19-difluoroandrost-4-ene-3,17-dione (5) is a mechanism-based inactivator of aromatase. The mechanism of inactivation was postulated to involve enzymic oxidation at, and hydrogen loss from, the 19-carbon. The deuteriated analogue 5b has now been synthesized and shown to inactivate aromatase at the same rate as the nondeuteriated parent (5). We conclude that C19-H bond cleavage is not the rate-limiting step in the overall inactivation process caused by 5. [19-3H]-19,19-Difluoroandrost-4-ene-3,17-dione (5b) with specific activity of 31 mCi/mmol was also synthesized to study the release of tritium into solution during the enzyme inactivation process. Incubation of [19-3H]19,19-difluoroandrost-4-ene-3,17-dione with human placental microsomal aromatase at differing protein concentrations resulted in time-dependent NADPH-dependent, and protein-dependent release of tritium. This tritium release is not observed in the presence of (19R)-10 beta-oxiranylestr-4-ene-3,17-dione, a powerful competitive inhibitor of aromatase. We conclude that aromatase attacks the 19-carbon of 19,19-difluoroandrost-4-ene-3,17-dione, as originally postulated.  相似文献   

17.
A spectrophotometric method for simultaneously estimating 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) in a binary mixture has been developed using sulphuric acid chromogens. The method has been used to estimate both AD and ADD during C-1(2)-dehydrogenation by Mycobacterium fortuitum NRRL B-8153.The authors are with the School of Life Sciences, Devi Ahilya Vishwavidyalaya. Vigyan Bhawan, Khandwa Road, Indore-452 001, India.  相似文献   

18.
The putative intermediate dienol (2) in the steroid isomerase (KSI) catalyzed conversion of 5-androstene-3,17-dione (1) to 4-androstene-3,17-dione (3) has been independently generated and tested as a substrate for KSI. At pH 7, dienol 2 is converted by KSI to a mixture of 1 (46%) and 3 (54%). The apparent second-order rate constant for reaction of 2 with KSI to produce 3 (kappa cat/Km = 2.3 x 10(8) M-1 s-1) is similar to that for reaction of 1 with KSI (kappa cat/Km = 2.1 x 10(8) M-1 s-1), demonstrating that 2 is kinetically competent. Isomerization of 1 by KSI in D2O gives only 5% of solvent deuterium incorporated into the product 3. When 2 reacts with KSI in D2O, and the product 3 is isolated (from direct reaction of 2 and from subsequent conversion of the 1 initially formed), ca. 80 atom % deuterium is located at C-6 beta, confirming that protonation of the dienol by KSI occurs at the same face as the proton transfer in the KSI catalyzed reaction of 1 to 3.  相似文献   

19.
A novel single-step microbial transformation process for the production of testosterone (TS) from cholesterol by Mycobacterium sp was investigated. It was found that the supply of reducing power, NADH, from the metabolism of glucose was necessary for the reduction of androst-4-en-3,17-dione (AD) to TS. The cultivation time for the maximum accumulation of TS and the residual glucose increased in parallel with the amount of glucose supplemented in fermentation cultures. After the glucose in the fermentation culture was completely consumed, most of the TS was oxidized to AD. Adding a larger amount of glucose could prevent oxidation of TS to AD. Under optimal fermentation conditions, the maximum molar conversion rate of TS from cholesterol was 51% in a 5-L surface-aerated fermentor after 120 h cultivation. Received 27 June 1997/ Accepted in revised form 11 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号