首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2022,48(7):9371-9377
Cubic Li7-3xGaxLa3Zr2O12 is a cubic phase with a space group of I-43d instead of Ia-3d. This structure is more conducive to the migration of lithium ions. However, the effect of Ga on the size and environment of lithium ion transport channels has not been researched. In this work, Li7-3xGaxLa3Zr2O12 (x = 0–0.25) was formulated, and the crystal structure was obtained by neutron diffraction. The results indicated that the minimum channel size to control Li+ migration in LLZO was the bottleneck size between the Li2 and Li3 sites (bottleneck size 2), and compared with lanthanum ions, the zirconium ions were closer to lithium ions. As the Ga content increased, bottleneck size 2 levelled off, while the lithium concentration and the distance between skeleton ions and lithium ions decreased. As a result, the lithium ionic conductivity primarily increased and then decreased. When doping 0.2 pfu of Ga, LLZO exhibited the highest lithium ionic conductivity of 1.45 mS/cm at 25 °C due to the coordinated regulation of Li+ concentration, bottleneck size, and the distance between skeleton ions and lithium ions.  相似文献   

2.
Cubic phase garnet-type Li7La3Zr2O12 (LLZO) is a promising solid electrolyte for highly safe Li-ion batteries. Al-doped LLZO (Al-LLZO) has been widely studied due to the low cost of Al2O3. The reported ionic conductivities were variable due to the complicated Al3+-Li+ substitution and LixAlOy segregation in Al-LLZO ceramics. This work prepared Li7?3xAlxLa3Zr2O12 (x = 0.00~0.40) ceramics via a conventional solid-state reaction method. The AC impedance and corresponding distribution of relaxation times (DRT) were analyzed combined with phase transformation, cross-sectional microstructure evolution, and grain boundary element mapping results for these Al-LLZO ceramics to understand the various ionic transportation levels in LLZO with different Al-doping amounts. The low conductivity in low Al-doped (0.12~0.28) LLZO originates from the slow Li+ ion migration (1.4~0.25 μs) in the cubic-tetragonal mixed phase. On the other hand, LiAlO2 and LaAlO3 segregation occur at the grain boundaries of high Al-doped (0.40) LLZO, resulting in a gradual Li+ ion jump (6.5 μs) over grain boundaries and low ionic conductivity. The Li6.04Al0.32La3Zr2O12 ceramic delivers the optimum Li+ ion conductivity of 1.7 × 10?4 S cm?1 at 25 °C.  相似文献   

3.
Garnet-type Li7La3Zr2O12 (LLZO) Li+ ion solid electrolyte is a promising candidate for next generation high-safety solid-state batteries. Ga-doped LLZO exhibits excellent Li+ ion conductivity, higher than 1 × 10?3 S cm?1. In this research, the doping amount of Ga, the calcination temperature of Ga-LLZO primary powders, the sintering conditions and the evolution of grains are explored to demonstrate the optimum parameters to obtain a highly conductive ceramics reproducibly via conventional solid-state reaction methods under ambient air sintering atmosphere. Cubic LLZO phase is obtained for Li6.4Ga0.2La3Zr2O12 powder calcined at low temperature 850 °C. In addition, ceramic pellets sintered at 1100 °C for 320 min using this powder have relative densities higher than 94% and conductivities higher than 1.2 × 10?3 S cm?1 at 25 °C.  相似文献   

4.
The mechanism underlying the enhancement of the conductivity of Li7La3Zr2O12 (LLZO), an oxide-based solid electrolyte that contains excess Li, was experimentally investigated through subvalent cation substitution. We prepared Sr-substituted Li-rich LLZO with high conductivity of the order of 10−4 S/cm by using a solid-state method. We investigated the mechanism underlying the conductivity enhancement via detailed structural analysis through Sr K-edge X-ray absorption near edge spectroscopy and X-ray diffraction and neutron powder diffraction analyses. The results suggested that the conductivity enhancement is due to the change in Li+ arrangement caused by the incorporation of excess Li into the LLZO lattice.  相似文献   

5.
Li7La3Zr2O12 (LLZO) has been reported to react in humid air to form Li2CO3 on the surface, which decreases ionic conductivity. To study the reaction mechanism, 0.5‐mol Ta‐doped LLZO (0.5Ta–LLZO) pellets are exposed in dry (humidity ~5%) and humid air (humidity ~80%) for 6 weeks, respectively. After exposure in humid air, the formation of Li2CO3 on the pellet surface is confirmed experimentally and the room‐temperature ionic conductivity is found to drop from 6.45×10?4 S cm?1 to 3.61×10?4 S cm?1. Whereas for the 0.5Ta–LLZO samples exposed in dry air, the amount of formed Li2CO3 is much less and the ionic conductivity barely decreases. To further clarify the reaction mechanism of 0.5Ta–LLZO pellets with moisture, we decouple the reactions between 0.5Ta–LLZO with water and CO2 by immersing 0.5Ta–LLZO pellets in deionized water for 1 week and then exposing them to ambient air for another week. After immersion in deionized water, Li+/H+ exchange occurs and LiOH H2O forms on the surface, which is a necessary intermediate step for the Li2CO3 formation. Based on these observations, a reaction model is proposed and discussed.  相似文献   

6.
The effect of hot‐pressing temperature on the microstructure and Li‐ion transport of Al‐doped, cubic Li7La3Zr2O12 (LLZO) was investigated. At fixed pressure (62 MPa), the relative density was 86%, 97%, and 99% when hot‐pressing at 900°C, 1000°C, and 1100°C, respectively. Electrochemical impedance spectroscopy showed that the percent grain‐boundary resistance decreased with increasing hot‐pressing temperature. Hot pressing at 1100°C resulted in a total conductivity of 0.37 mS/cm at room temperature where the grain boundaries contributed to 8% of the total resistance; one of the lowest grain‐boundary resistances reported. We believe hot pressing is an appealing technique to minimize grain‐boundary resistance and enable correlations between LLZO composition and bulk ionic conductivity.  相似文献   

7.
《Ceramics International》2016,42(10):12156-12160
Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was prepared via conventional solid-state reaction. The effects of sintering temperature and Al doping content on the structure and Li-ion conductivity of LLZO were investigated. The phase composition of the products was confirmed to be cubic LLZO via XRD. The morphology and chemical composition of calcined powders were investigated with SEM, EDS, and TEM. The Li-ion conductivity was measured by AC impedance. The results indicated the optimum sintering temperature range is 800–950 °C, the appropriate molar ratio of LiOH·H2O, La(OH)3, ZrO2 and Al2O3 is 7.7:3:2:(0.2–0.4), and the Li-ion conductivity of LLZO sintered at 900 °C with 0.3 mol of Al-doped was 2.11×10−4 S cm−1 at 25 °C.  相似文献   

8.
Lithium-sulfur (Li–S) batteries are attractive due to their high theoretical energy density. However, conventional Li–S batteries with liquid electrolytes undergo polysulfide shuttle-effect and lithium dendrite formation during charge/discharge process, leading to poor electrochemical performance and safety issues. Garnet type Li7La3Zr2O12 (LLZO) solid-state electrolyte (SSE) restricts the penetration of polysulfides and exhibits high ionic conductivity at room temperature (RT). Herein, Li6.5La3Zr1.5Nb0.5O12 (LLZNO) ceramic electrolyte using Li3PO4 (LPO) as sintering aids (LLZNO-LPO) is prepared by the rapid sintering method and is applied to construct a shuttle-effect free solid-state Li–S battery. The SSE displays high conductive pure cubic-LLZO phase; during the rapid sintering, LPO melts and junctions the voids between the grains, thus improves Li+ conductivity. As a result, the LLZNO-LPO ceramic electrolyte with Li+ conductivity of 4.3 × 10?4 S cm?1 and high critical current density (CCD) of 1.2 mA cm?2 is obtained at RT. The Li–S solid-state battery which utilizes LLZNO-LPO ceramic electrolyte can deliver an initial discharge capacity of 943 mA h·g?1 and 602 mA h·g?1 retention after 60 cycles. In the same time, the initial coulombic efficiency is as high as 99.5%, indicating that the SSE can effectively block the polysulfide shuttle towards the Li anode and fulfill a shuttle-free Li–S battery.  相似文献   

9.
固态电解质是高安全性、高能量密度的全固态锂电池的核心部件,其典型代表Li7La3Zr2O12(LLZO)具有高离子电导率、高机械强度、高电化学稳定性、低界面阻抗以及对锂金属负极良好的稳定性等优势,是科研人员重点关注的对象之一,但与液态电解质相比,目前LLZO仍存在低离子电导率和与电极固-固界面接触等问题。本文主要简介了LLZO的晶体结构、改性方式等对其离子电导率及界面阻抗的影响,同时对LLZO现存的问题进行了总结,对LLZO的未来发展方向进行了展望,为探索全固态锂电池的实际生产应用提供理论指导。  相似文献   

10.
Doping some elements on Li site of LLZO is an effective method to stabilize it as cubic phase and improve Li+ conductivity. The reported possible Li site elements calculated by first principle are Be, B, Al, Fe, Zn, Ga and the Ga-doped LLZO shows the a higher conductivity than other LLZO. However, whether these elements all can stable LLZO as cubic phase are needed to be verified and the reason of Ga exhibits higher conductivity is not clear enough. In this work, all these elements are tried to be doped on Li site and the results show that the Al, or Fe, or Ga can stable LLZO as cubic phase while the others does not. The Ga-doped LLZO exhibits the highest conductivity of 1.31×10−3 S•cm-1 due to the transform of group space from Ia-3d to I-43d, shorter distances between different Li+, and Ga can improve the grain size.  相似文献   

11.
Metallic doping can stabilize cubic phase Li7La3Zr2O12 (LLZO) solid electrolyte for high conductivity, due to the enhanced vacancies and disordered Li-site. However, the understanding of metallic doping in the crystal lattice during the high-temperature sintering process is still not clear. In present study, a gradient series of Fe doped LLZO are formulated via solid-phase reaction, and then investigated through crystal analysis and morphological characterization. Pair distribution function essay implies that doped Fe3+ promotes random distribution of Li+ over the available sites in the located crystal. Additionally, the ceramic morphology confirms that the particles sizes in LLZO pellets suddenly grow above 1000 ℃, and Fe doping can obviously suppress Li loss above 600 ℃. As a result, the LLZF0.15 exhibits the relatively high ionic conductivity of 1.99 × 10–5 S cm–1 at 45 ℃.  相似文献   

12.
Amorphous Li3PS4 films were synthesized by pulsed laser deposition (PLD) at room temperature using Li3PS4 targets with excess lithium and sulfur. Raman and X‐ray photoemission spectroscopies indicated that the Li3PS4 film synthesized with a stoichiometric amount of Li3PS4 target contained lithium‐deficient phases such as Li4P2S6, Li2?xS and sulfur due to composition deviation caused during the ablation process. The film synthesized with a 14% Li2S‐excess target (Li3.42PS4.21) contained fewer impurities, and exhibited a higher ionic conductivity of 5.3 × 10?4 S/cm at 298 K than the lithium‐deficient film (3.1 × 10?4 S/cm). The target composition is an important factor for the fabrication of highly conductive Li3PS4 films for electrolytes in thin‐film batteries.  相似文献   

13.
Lithium-ion batteries, as one of the energy storage devices, has attracted much attention due to its remarkable characteristics. However, they pose safety challenges because of their liquid electrolytes. Solid electrolytes are one of the key candidates to tackle the safety issues in Li-ion batteries. As a solid electrolyte, garnet-type Li7La3Zr2O12 is a promising candidate with its high stability against lithium metal and wide electrochemical window among its counterparts. But, the ionic conductivity is yet to be compared with liquid electrolytes. Hence, doping is still the common strategy to adjust the ionic conductivities. Despite the fact that doping with various elements is well-documented, Lanthanide group element doping is not thoroughly investigated. This research is to study the synthesis of garnet-type Li7La3-xMxZr2O12 (M = Sm, Dy, Er, Yb; x = 0.0–1.0) novel compositions to enlighten the effect of lanthanide group element doping as a function of ionic radius. Results showed that increasing dopant ionic radius improves densification, diminishes Li-ion conduction and, except Yb case, expands the lattice. However, impurity phases formed when the solubility limit is reached, has overall a positive impact on Li-ion conduction. The highest ionic conductivity (0.15 mS/cm) and lowest activation energy (0.18 eV) without impurity phases were obtained from Yb doped LLZO. It was also found that the presence of LiDyO2 improves the ionic conductivity to 0.16 mS/cm.  相似文献   

14.
全固态锂电池采用固体电解质取代液态电解质,使其具有更高安全性,且有望进 一步提高电池的能量密度。而在众多固体电解质中,具有石榴石型结构的立方相 Li7La3Zr2O12 (LLZO) 及其元素掺杂产物由于室温离子电导率较高、电化学窗口较宽、与锂金属稳定等优点, 最有可能应用于全固态锂电池中。本文对 LLZO 的物相及晶体结构、制备方法、锂离子电导率 的提升策略以及其所组装的全固态锂电池等方面进行了详细介绍,并预测了 LLZO 固体电解质 材料进一步提升锂离子电导率的潜在可能以及 LLZO 所装配的全固态锂电池的发展方向。  相似文献   

15.
Ta‐doped cubic phase Li7La3Zr2O12 (LLZ) lithium garnet received considerable attention in recent times as prospective electrolyte for all‐solid‐state lithium battery. Although the conductivity has been improved by stabilizing the cubic phase with the Ta5+ doping for Zr4+ in LLZ, the density of the pellet was found to be relatively poor with large amount of pores. In addition to the high Li+ conductivity, density is also an essential parameter for the successful application of LLZ as solid electrolyte membrane in all‐solid‐state lithium battery. Systematic investigations carried out through this work indicated that the optimal Li concentration of 6.4 (i.e., Li6.4La3Zr1.4Ta0.6O12) is required to obtain phase pure, relatively dense and high Li+ conductive cubic phase in Li7?xLa3Zr2?xTaxO12 solid solutions. Effort has been also made in this work to enhance the density and Li+ conductivity of Li6.4La3Zr1.4Ta0.6O12 further through the Li4SiO4 addition. A maximized room‐temperature (33°C) total (bulk + grain boundary) Li+ conductivity of 3.7 × 10?4 S/cm and maximized relative density of 94% was observed for Li6.4La3Zr1.4Ta0.6O12 added with 1 wt% of Li4SiO4.  相似文献   

16.
In this study, Li0.35La0.55TiO3 (LLTO) was coupled with Al-doped lithium lanthanum zirconate (LLZO) to improve the grain boundary and total conductivity. The obtained ceramic pellets (LLTZO) demonstrated a recordable grain boundary and total conductivity of 3.41 × 10−4 and 3.03 × 10−4 S/cm, respectively. The obtained results establish that the heteroatoms can perturb the cation ordered structure and improve the 3D conductivity in grain bulk. In addition, the residual Al-doped LLZO on the grain boundary led to a decline in the boundary resistance. An LiFeCoPO4 |Li cell was adopted to demonstrate the enhanced conductivity of LLTO. The solid state battery rendered a specific capacity of over 101.2 mAhg−1 after 300 cycles at a relatively high rate of 0.5C. It is established from the experiments that manufacturing a solid battery using the all-coating technique provides a promising approach to achieve a practical application.  相似文献   

17.
Freeze casting is used for the first time to prepare solid electrolyte scaffolds with oriented porosity and dense ceramic walls made of Li7La3Zr2O12 (LLZO), one of the most promising candidates for solid-state battery electrolytes. Processing parameters—such as solvent solidification rate, solvent type, and ceramic particle size—are investigated, focusing on their influence on porosity and ceramic wall density. Dendrite-like porosity is obtained when using cyclohexane and dioxane as solvents. Lamellar porosity is observed in aqueous slurries resulting in a structure with the highest apparent porosity and densest ceramic scaffold but weakest mechanical properties due to the lack of interlamellar support. The use of smaller LLZO particle size in the slurries resulted in lower porosity and denser ceramic walls. The intrinsic ionic conductivity of the oriented LLZ ceramic scaffold is unaffected by the freeze casting technique, providing a promising ceramic scaffold for polymer infill in view of designing new types of ceramic-polymer composites.  相似文献   

18.
《Ceramics International》2022,48(21):31315-31325
Garnet-type Li7La3Zr2O12 (LLZO) is one of the most promising solid-state electrolytes (SSEs) for advanced solid-state lithium batteries (SSLBs). In this work, Li6.25Al0.25La3Zr2O12, Li6.4Ga0.2La3Zr2O12, and Li6.4La3Zr1.4Ta0.6O12 ceramics are prepared by a modified wet chemical route. The composition of the black mixtures derived from the precursors is ascertained. The phase evolution and structural properties from the ceramic mother powders to the final ceramic electrolytes are discussed in detail. The characteristic of cubic LLZO with the space group I-43d arises in the Li6.4Ga0.2La3Zr2O12 ceramic electrolyte pellet after the secondary higher-temperature (1200 °C) sintering. The Rietveld refinement reveals the roles of Al3+ substitution at the Li+ sites and Ta5+ substitution at the Zr4+ sites to adjust crystal structure. In addition, the electrochemical performance of the ceramic pellets is also investigated. Remarkably, the Li6.4La3Zr1.4Ta0.6O12 ceramic electrolyte has the most outstanding electrochemical performance, showing the high ionic conductivity of 6.88 × 10?4 S cm?1 (25 °C), the low activation energy of 0.42 eV and an extremely low electronic conductivity of 1.77 × 10?8 S cm?1 (25 °C). Overall, it is supposed that this work may help to achieve high-quality modified LLZO ceramic electrolytes, especially using the wet chemical strategy.  相似文献   

19.
《Ceramics International》2022,48(18):25689-25695
Al-doped Li7La3Zr2O12 (Al–LLZO) solid electrolytes were sintered at 1150 °C for 8 h in atmosphere of oxygen, argon and air (named as Al–LLZO–O2, Al–LLZO–Ar and Al–LLZO–Air, respectively). All the Al–LLZO samples exhibited a single cubic garnet-type structure. The sample of Al–LLZO–O2 possessed the highest relative density (95.60%) and the largest average grain size among the three Al–LLZO samples. Furthermore, owing to its high relative density and small number of grain boundaries, Al–LLZO–O2 demonstrated a higher lithium-ion conductivity than Al–LLZO–Ar and Al–LLZO–Air.  相似文献   

20.
《Ceramics International》2023,49(2):1980-1986
LiTa2PO8 (LTPO) is a new solid-state electrolyte material, which has high bulk ionic conductivity and low grain boundary ion conductivity. However, the conductivity of materials synthesized by conventional methods is much lower than the theoretically calculated values. In this work, large radius Te ion are doped at Ta (3)-site in order to enlarge the lattice parameters and increase Li content, which are beneficial for increasing ionic conductivity. The Te substitution changes the Ta surrounding environment, increases the binding capacity of Ta–O, and reduces the attraction of oxygen to lithium ions in the system. The prepared dense Li1.04Ta1.96Te0.04PO8 ceramic electrolyte exhibits a low activation energy of 0.193 eV and four times higher ion conductivity (4.5 × 10?4 S cm?1) than undoped samples. Moreover, Li1.04Ta1.96Te0.04PO8 shows a stable cycling performance in the symmetric Li/Li cells and the Li/CPE/Li1.04Ta1.96Te0.04PO8/LiFePO4 batteries with the separation of a thin PEO membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号