首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
马铃薯淀粉废水的综合处理工艺研究   总被引:1,自引:0,他引:1  
实验以H2O2/Fe2+为氧化剂,与改性膨润土处理马铃薯淀粉废水,并考察了不同浓度H2O2的加入量、FeSO4加入量、pH值、反应时间及膨润土的加入量对COD去除率和脱色率的影响。结果表明,在反应条件为10%H2O2投加量10mL/L,0.1mol/L FeSO4加入量20mL/L,改性膨润土的用量40g/L,pH=4.0,反应时间1h时,COD去除率和脱色率分别达90%和98%。  相似文献   

2.
刘明月  阮新潮  曾庆福  丁艳华 《应用化工》2008,37(2):131-134,139
基于印染废水具有成分复杂、色度高、难降解物质多等特点,采用臭氧协同内电解(IE/O3)对分散艳蓝E-4R进行处理。实验结果表明,在染液浓度为1 g/L加入铁屑量为300 g,通臭氧进气量为150 L/h,pH=11,反应温度为40℃,铁屑粒径为0.9~2 mm,铁炭比为1∶1时处理效果最佳,脱色率、CODC r去除率和TOC去除率分别为99.66%,75.94%和56.84%。臭氧协同内电解在最佳条件下处理染液的脱色率和CODC r去除率均明显高于二者单独作用,CODC r去除率分别比单独作用高59.03%和37.63%。另外,比较降解染液中的有机卤化物的含量,发现在协同作用下对该染料的降解更为彻底,矿化程度更高,有机氯化物去除率达到50.60%。  相似文献   

3.
Fenton氧化深度处理制药废水二级生化出水   总被引:1,自引:1,他引:0  
采用Fenton氧化法处理抗生素类药品生产废水二级生化出水,考察了初始pH值、FeSO4·7H2O与H2O2投加量及投加方式、反应时间等因素对CODCr去除效果的影响。试验确定最佳操作条件为:初始pH值为4.0,一次性投加1.2 mL/L H2O2和1.0 g/L FeSO4·7H2O,两者的物质的量比约为3∶1,曝气反应2 h,最终CODCr的去除率可达56.8%;Fenton氧化可将废水m(BOD5)/m(CODCr)值由0.18提高至0.32,为后续生物处理提供了良好条件。  相似文献   

4.
TiO2/粉煤灰协同Fenton试剂处理百草枯废水   总被引:1,自引:0,他引:1  
伏广龙  郭俊晶  马卫兴  姬湄春 《农药》2012,(9):654-655,677
[目的]通过实验探讨百草枯农药废水处理的新方法。[方法]采用单因素试验确定TiO2/粉煤灰协同Fenton试剂处理百草枯农药废水的最佳条件。[结果]TiO2、H2O2与FeSO4.7H2O投加量分别为150 g/L、5 mL/L和300 mg/L,反应20 min时,脱色率为92.23%,CODCr去除率为67.61%。[结论]TiO2/粉煤灰协同Fenton试剂处理百草枯废水效率高且操作方便,有良好的应用前景。  相似文献   

5.
陈晓刚  黄志佩 《广东化工》2013,(14):244-245,241
采用Fenton高级氧化和铁碳微电解技术处理含硝基苯的模拟染料废水,通过重铬酸钾法测定化学需氧量(CODCr),确定最佳工艺参数。实验结果表明,在室温条件下,模拟废水CODCr为1825 mg/L,Fenton高级氧化处理废水的最佳条件为FeSO4和H2O2加入量分别为180 mg/L和4.8 mL/L,反应时间60 min,CODCr去除率可达79.07%;铁碳微电解处理废水的最佳条件为铁屑大小是40目,铁碳加入量为20 g/L,铁碳质量(g)比为1.5∶1,处理60 min,CODCr去除率可达50.50%;Fenton高级氧化-铁碳微电解联合处理时,CODCr去除率高达97.80%。  相似文献   

6.
武强  谷启源  陈凯华  张雷 《煤化工》2011,39(6):45-48
介绍了Fenton试剂-混凝沉淀深度处理煤气化废水的实验,讨论了H2O2投加量、FeSO4投加量、反应pH值及反应时间对CODCr去除率的影响。实验所得最佳条件为:H2O2投加量600mg/L、FeSO4投加量200mg/L,酸化槽内pH值控制为3±0.5,水力停留时间30min;中和释气槽内pH值控制7±1,水力停留时间30min;沉淀器进水加入PAM 5mg/L,水力停留时间90min。在此条件下,最终CODCr去除率可达71.7%,色度去除率达到79.89%。  相似文献   

7.
研究了臭氧(O3)氧化技术对染料废水的处理效果,并探讨了O3投加量和处理时间对染料废水化学需氧量(CODCr)和色度去除效果的影响,同时比较了O3和臭氧/紫外(O3/UV)两种方法对染料废水的去除效果。结果显示,O3投加量和处理时间是影响染料废水CODCr和色度去除效率的重要因素,O3投加量为2 g/(L·h),处理20 min时,CODCr的去除率达到52%,色度的去除率达88%;O3投加量为1 g/(L·h),处理60 min时,CODCr的去除率达到64%,色度的去除率达96%。采用O3/UV方法,O3投加量为1 g/(L·h),处理60 min,CODCr的去除效率72%,对色度去除效率为97%。  相似文献   

8.
响应面法分析Fenton氧化垃圾渗滤液的过程   总被引:7,自引:2,他引:5  
傅剑锋  武秋立 《化工进展》2006,25(12):1493-1495,1503
利用统计学的方法对Fenton氧化垃圾渗滤液的影响因素进行了探讨和分析,考察了FeSO4?7H2O投加量,H2O2/FeSO4.7H2O比值和pH值对氧化垃圾渗滤液的影响。在FeSO4.7H2O投加量为0.01~0.02 mol/L、H2O2/FeSO4.7H2O比值1~5和pH值2~6的条件下,分析CODCr的变化。通过使用Design-Expert 5软件可得到1个二次响应曲面模型,最佳的FeSO4.7H2O投加量为0.013mol/L、H2O2/FeSO4.7H2O比值4.60和pH值4.45,从而CODCr的去除率也达到最大(69.85%)。  相似文献   

9.
CaO2/H+/FeSO4体系处理染料废水的研究   总被引:1,自引:1,他引:0  
研究了CaO2/H+/FeSO4复合体系对以酸性黑10B为代表的4种水溶性染料模拟废水的处理,并以酸性黑10B为研究对象,研究了各种反应条件对脱色率的影响,结果表明当染料初始质量浓度为25 mg/L时,pH在2~3,CaO2为200 mg/L,FeSO4@7H2O为100~150 mg/L,反应时间为30 min的条件下,脱色率即可达到近100%,溶液无色透明.对高色度、高CODCr实际染料废水,采用以CaO2/H+/FeSO4复合体系催化氧化为主的稀释-催化氧化-絮凝-吸附综合处理工艺,也取得了很好的效果.说明该体系对水溶性染料具有很好的脱色效果,且脱色速率快,药品用量少,成本低,在废水处理上有较大的应用前景.  相似文献   

10.
甲基多巴是一种降压药物,其生产废水具有高色度、高有机物浓度和生物难降解的特性.采用Fenton氧化-PAM絮凝-A/O生化工艺处理该废水.Fenton氧化处理的优化条件为:pH 5.0,n(Fe2 )∶n(H2O2)=1∶4,H2O2和绿矾投加质量浓度分别为5.0 g/L和10.2 g/U,反应时间2.0 h.PAM絮凝处理的优化条件为:pH 7.0,投加量16.7mg/L.经过Fenton氧化-PAM絮凝处理,CODCr去除率达到74%,脱色率达95%,B/C由0.17升到0.38,废水的可生化性明显提高.后续采用A/O工艺进一步处理,可再去除70%~80%的CODCr.  相似文献   

11.
采用一种新型微电解材料处理实际印染废水,探讨了影响处理效果的诸多因素,并通过正交试验确定了最佳处理条件.在曝气量0.75 L/min、反应时间2h、进水pH值为4、材料投加量为0.6kg/L时,印染废水的CODCr和色度去除率分别达到80%和92%以上.本法处理效果明显高于传统铁炭法,CODCr和色度去除率分别高出30...  相似文献   

12.
铁炭微电解法预处理拉米夫定制药废水的研究   总被引:2,自引:0,他引:2  
试验采用铁炭微电解法预处理高浓度拉米夫定制药废水,通过改变进水pH值、铁炭体积比和反应时间等条件考查其对CODCr和色度指标的去除情况。最佳工况参数如下:进水pH值为3,铁炭体积比为2∶1,反应时间为2 h,在反应过程中从铁炭底部加以曝气。结果表明,该工艺处理CODCr和BOD5的质量浓度分别为13 600和1 950 mg/L、色度为3 000倍的废水,其CODCr和色度的去除率分别达到56%和90%,m(BOD5)/m(CODCr)由0.14提高到0.45,废水可生化性得到改善。铁炭微电解法处理拉米夫定制药废水具有操作简便、成本低、处理效果好、不产生二次污染等优点,适合作为拉米夫定制药废水的预处理方法。  相似文献   

13.
苎麻废水预处理试验研究   总被引:1,自引:0,他引:1  
采用酸析结合铁-碳内电解法对苎麻废水进行了预处理,探讨了pH值调节条件及铁碳内电解法对废水处理效果的影响。结果表明,在室温下将废水酸析处理pH值调节至3.0时,CODCr的质量浓度可以从15981降到11363mg/L,CODCr、色度去除率分别达28.91%、84.32%;接着在pH值为3.0,处理时间180min,铁碳加入质量为废水总质量的20%,铁与碳的质量比为5∶1,温度为30℃的最佳工艺条件下,用铁碳内电解法对废水进行处理,CODCr的质量浓度可进一步下降到6774mg/L,CODCr去除率为57.60%,色度去除率达96.80%。  相似文献   

14.
采用自制粉煤灰混凝剂对DDNP废水进行预处理试验,通过色度去除率和CODCr去除率考察了混凝剂投加量、废水pH值及反应温度等因素对处理效果的影响,用正交试验优化了工艺条件。结果表明当废水pH=9,混凝剂投加量为40g/L,温度为30℃时,处理后废水的CODCr可降低54%以上,色度可降低90%以上。  相似文献   

15.
采用铁炭微电解法对苯胺废水进行预处理,微电解的作用使苯胺废水中的大部分苯胺降解,而且出水中含有足够的Fe2+,从而减少了催化氧化过程中双氧水的消耗量。结果表明:当进水苯胺、CODCr的质量浓度分别为204、448mg/L,色度为500倍时,在最佳工艺条件(微电解工艺的铁炭体积比1∶1、废水pH值为5,停留时间90min;催化氧化工艺条件为双氧水(30%)用量0.3mL/L,pH值调节至5,反应时间60min)下,该方法对苯胺的去除率为95.32%,对CODCr的去除率达到66.96%,色度的去除率为92%。  相似文献   

16.
采用HABR-CASS组合工艺进行棉机织物印染废水处理的中试研究.结果表明,在HABR厌氧池、CASS反应池的水力停留时间分别为24、12 h的条件下,系统对CODCr、BOD5、氨氮、SS的总去除率分别为90.4%、95.5%、87.0%、87.5%,各污染物出水平均质量浓度分别为67.5、13.8、6.9、38.0...  相似文献   

17.
采用工业生产中排放的H酸废水作为研究对象,探讨了臭氧-H2O2氧化的预处理方法对该废水的处理效果。结果表明:在单独臭氧氧化反应体系中,初始CODCr的质量浓度为1 200 mg/L,pH值为7,臭氧氧化时间在20 min(通量为1 L/min)时,CODCr和色度去除率分别为36.7%和95%。单独H2O2氧化反应体系中,H2O2投加量为8 mL/L时,CODCr去除率为7.7%,H2O2投加量达到60 mL/L时,CODCr去除率最高仅达到25.6%。臭氧-H2O2联用体系中,相同初始CODCr浓度、pH值、臭氧氧化时间及臭氧通量条件下,质量分数为3%的H2O2溶液投加量为8 mL/L时,CODCr和色度去除率分别可达48.8%和98%。因此,臭氧-H2O2氧化的预处理方法对H酸废水降解效果良好,且明显优于单独臭氧氧化以及单独H2O2氧化。  相似文献   

18.
铁碳微电解-SBR工艺处理己内酰胺废水试验研究   总被引:1,自引:1,他引:0  
采用铁碳微电解-SBR工艺处理己内酰胺废水,考察了pH值、铁碳质量比、反应时间等因素对铁碳微电解处理效果的影响。试验结果表明:在进水CODCr的质量浓度为2 000~3 000mg/L,BOD5的质量浓度为1 000~1 500 mg/L,NH3-N的质量浓度为150 mg/L左右,色度约为120倍的条件下,当进水pH值为3,铁碳质量比为4∶1,反应时间为1.5 h时,铁碳微电解对CODCr、NH3-N、色度的去除率分别达到50.6%、41.8%、33.3%;己内酰胺废水经铁碳微电解-SBR工艺处理后,最终出水CODCr的质量浓度稳定在80 mg/L左右,BOD5的质量浓度稳定在15 mg/L以下,NH3-N的质量浓度小于15 mg/L,色度小于45倍,均达到GB 8978—1996《污水综合排放标准》中一级标准的要求。  相似文献   

19.
固定化微生物技术处理费托合成废水研究   总被引:1,自引:1,他引:0  
采用固定化复合菌对煤间接制油费托合成废水进行生化处理,考察固定化微生物技术对费托合成废水中CODCr和NH_3-N的去除效果,并确定最佳的反应参数。结果表明,在初始pH值为7.0,固定化复合菌投加量为90 g/L,温度为30℃的最佳条件下,恒温振荡96 h后,废水中CODCr、NH_3-N的质量浓度分别由初始的10 512.3、30.0 mg/L降至2 094.0、4.7 mg/L,去除率分别为80.08%、84.47%。在合适的CODCr浓度范围内,固定化复合菌对废水的处理效果显著。说明固定化微生物技术对煤间接制油费托合成废水具有良好的处理效果。  相似文献   

20.
采用自制亚氧化钛修饰钛电极装置处理焦化废水,考察了电流密度、p H值、处理时间对CODCr、氨氮、色度等处理效果的影响。研究结果表明,在电流密度为15 m A/cm2、p H值为3~5、处理时间为100 min的条件下,废水CODCr、氨氮、色度的去除率分别达到95.0%、99.5%、90.0%,该装置能有效地处理焦化废水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号