首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
We present results of CCD photometric observations of the short-period W UMatype contact binary system, RZ Com. The light curve of the binary has changed from Wsubtype to A-subtype from 1998 to 2003, then back to W-subtype in 2004. An analysis was carried out using the 2003 version of the Wilson-Devinney code. It is confirmed that RZ Com is a low-degree, overcontact f = 20.1% (±7.4%) binary system with a high inclination of i = 81.°40 (±0.°40), and a mass ratio q = 2.351 (±0.031). Combining four newly determined times of light minimum with others in the literature, the variations in orbital period is examined. A small-amplitude oscillation (A=0.0065d), with a period of 41.5 year, is discovered superimposed on a long-term increase at rate dP/dt = +3.97×10-8d yr-1. The period oscillation can be explained either by the light-time effect due to the presence of an unseen third body, or by cycles of magnetic activity on the components. Combining our photometric solution with the spectroscopic elements obtained by Mclean & Hilditch, the absolute dimensions of RZ Com are: M1 = 1.14 (+0.19)Mo, M2 = 0.50 (-4-0.09)Mo, R1= 1.12 (±0.01)R⊙, R2 = 0.78 (±0.01)R⊙ and A = 2.41 (±0.02)R⊙.  相似文献   

2.
Seven charge-coupled device(CCD)photometric times of light minimum of the overcontact binary BS Cas which were obtained from 2007 August to November and one CCD light curve in the R band which was observed on 2007 September 24 and October 15,are presented.It is found that the light curve of BS Cas has characteristics like a typical EW-type light variation.The light curve obtained by us is symmetric and shows total eclipses,which is very useful for determining photometric parameters with high precision.Photometric solutions were derived by using the 2003 version of the Wilson-Devinney code.It shows that BS Cas is a W-subtype overcontact binary(f = 27.5% ± 0.4%)with a mass ratio of q = 2.7188 ± 0.0040.The temperature difference between the two components is 190 K.Analysis of the O-C curve suggests that the period of AE Phe shows a long-term continuous decrease at a rate of dP/dt=-2.45 × 10-7 dyr-1.The long-time period decrease can be explained by mass transfer from the primary to the secondary.  相似文献   

3.
TZ Lyrae: an Algol-type Eclipsing Binary with Mass Transfer   总被引:1,自引:0,他引:1  
We present a detailed investigation of the Algol-type binary TZ Lyrae, based on 55 light minimum timings spanning 90 years. It is found that the orbital period shows a long-term increase with a cyclic variation superimposed. The rate of the secular increase is dP/dt = 7.18 × 10?8d yr?1, indicating that a mass transfer from the less massive component to the more massive one at a rate of dm = 2.21 × 10-8M⊙yr-1. The cyclic component, with a period of P3 = 45.5 yr and an amplitude of A = 0d.0040, may be interpreted as either the light-time effect in the presence of a third body or magnetic activity cycles in the components. Using the latest version Wilson-Devinney code, a revised photometric solution was deduced from B and V observations. The results show that TZ Lyr is an Algol-type eclipsing binary with a mass ratio of q = 0.297(±0.003). The semidetached configuration with a lobe-filling secondary suggests a mass transfer from the secondary to the primary, which is in agreement with the long-term period increase of the binary system.  相似文献   

4.
A photoelectric light curve of BL And is presented along with the first CCD light curve of GW Tau. Both objects are short-period eclipsing binaries and were observed in 2003 or 2004. Photometric elements were computed using the latest version of the Wilson–Van Hamme code. The results reveal that BL And is a semidetached system with the primary component filling its Roche lobe and the secondary one almost filling but still detached, while GW Tau is a marginal-contact binary system with a small degree of contact ( f = 10.9 per cent) and a large temperature difference of about 3100 K. All available eclipse times, including new ones, were analysed for each system. It was found that the orbital period of BL And is decreasing at the rate of  d P /d t =−2.36 × 10−8 (±0.09) d yr−1  while that of GW Tau may be decreasing or oscillating. We think period decrease is more probable. The derived configuration and secular period decrease for BL And combined with the asymmetry of the light curve indicate that this system may evolve from the present semidetached phase into a contact stage, with mass transfer from the primary component to the secondary one through the L 1 point, or that it might just undergo the broken stage predicted by the theory of thermal relaxation oscillations. In contrast, GW Tau is a marginal-contact binary in poor thermal contact and may be at the beginning of the contact phase.  相似文献   

5.
6.
Photometric BV light curves of BO CVn obtained in 1992 and new times of minima are presented. The primary minimum shows a transit, whereas the secondary minimum, shows an occultation. The system may be classified as an A‐type W UMa system. A complete study of minima allows one to detect a possibly increasing period by about 0.037 s/yr. This indicates that the conservative mass transfer rate from the less massive component to the more massive one is 1.57 10—10M /yr. Because of the variable period, the new ephemeris is determined for future observations. Using the Wilson‐Devinney code a simultaneous solution of the B and V light curves is also performed. The analysis shows that the system is in a contact configuration with q = 0.205 ± 0.001 and fillout factor (f) = 0.18, T1 = 7240 K (fixed), T2 = 7150± 10 K. The high orbital inclination i = 87°.54 ± 0.26 was con firmed by photometric observations of the secondary minimum.  相似文献   

7.
8.
9.
Orbital period variations of the Algol-type eclipsing binary, VW Hydrae, are analyzed based on one newly determined eclipse time and the other times of light minima collected from the literature. It is discovered that the orbital period shows a continuous increase at a rate of dP/dt = +6.34×10-7 d yr-1 while it undergoes a cyclic change with an amplitude of 0.0639 d and a period of 51.5 yr. After the long-term period increase and the large-amphtude period oscillation were subtracted from the O-C curve, the residuals of the photoelectric and CCD data indicate a small-amplitude cyclic variation with a period of 8.75 yr and a small amplitude of 0.0048d. The continuous period increase indicates a conservative mass transfer at a rate of dM2/dt = 7.89×10-8 M⊙ yr-1 from the secondary to the primary. The period increase may be caused by a combination of the mass transfer from the secondary to the primary and the angular momentum transfer from the binary system to the circumbinary disk. The two cyclic period oscillations can be explained by light-travel time effects via the presence of additional bodies. The small-amplitude periodic change indicates the existence of a less massive component with mass M3 > 0.53 M⊙, while the large-amplitude one is caused by the presence of a more massive component with mass M4 > 2.84 M⊙. The ultraviolet source in the system reported by Kviz & Rufener (1987) may be one of the additional components, and it is possible that the more massive one may be an unseen neutron star or black hole. The rapid period increase and the possibility of the presence of two additional components in the binary make it a very interesting system to study. New photometric and high-resolution spectroscopic observations and a detailed investigation of those data are required in the future.  相似文献   

10.
11.
12.
13.
The 'All Sky Automated Survey' (ASAS) photometric observations of LS 1135, an O-type single-lined binary (SB1) system with an orbital period of 2.7 d, show that the system is also eclipsing performing a numerical model of this binary based on the Wilson–Devinney method. We obtained an orbital inclination     . With this value of the inclination, we deduced masses   M 1∼ 30 ± 1 M  and   M 2∼ 9 ± 1 M  , and radii   R 1∼ 12 ± 1 R  and   R 2∼ 5 ± 1 R  for primary and secondary components, respectively. Both the components are well inside their respective Roche lobes. Fixing the T eff of the primary to the value corresponding to its spectral type (O6.5V), the T eff obtained for the secondary component corresponds approximately to a spectral type of B1V. The mass ratio   M 2/ M 1∼ 0.3  is among the lowest known values for spectroscopic binaries with O-type components.  相似文献   

14.
The contact binary AW UMa has an extreme mass ratio, with the more-massive component (the current primary) close to the main sequence, while the low-mass star at   q ≈ 0.1  (the current secondary) has a much larger radius than a main-sequence star of a comparable mass. We propose that the current secondary has almost exhausted hydrogen in its centre and is much more advanced in its evolution, as suggested by Stpień. Presumably the current secondary lost most of its mass during its evolution with part of it transferred to the current primary. After losing a large fraction of its angular momentum, the binary may evolve into a system of FK Com type.  相似文献   

15.
The first ground‐based BVR photometric observations of the recently discovered eclipsing binary V744 Cas are presented. From these measurements, timings for two primary and one secondary minima have been calculated. The light curves of the system were analyzed by using the Wilson‐Devinney program. The analysis shows that the system is detached with two similar components of spectral type A2V, and the orbit is eccentric (e = 0.0662 ± 0.0005). The longitude of the periastron (ω) was found significantly different for two different light curves (ours and that of Hipparcos), which is strongly suggestive of an apsidal motion with a period of about 425 ± 68 yr. This makes V744 Cas an important candidate for studies of apsidal motions. The first estimate of the absolute dimensions place the system close to the terminal age of the main sequence (TAMS) in the HR diagram. The distance from the spectroscopic parallax (d = 740 ± 10 pc) was found to be slightly larger than the Hipparcos distance of d = 610 ± 400 pc. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
17.
18.
19.
The time sequence of 105 spectra covering one full orbital period of AA Dor has been analysed. Direct determination of   V  sin  i   for the sdOB component from 97 spectra outside of the eclipse for the lines Mg  ii 4481 Å and Si  iv 4089 Å clearly indicated a substantially smaller value than estimated before. Detailed modelling of line-profile variations for eight spectra during the eclipse for the Mg  ii 4481 Å line, combined with the out-of-eclipse fits, gave   V  sin  i = 31.8 ± 1.8 km s−1  . The previous determinations of   V  sin  i   , based on the He  ii 4686 Å line, appear to be invalid because of the large natural broadening of the line. With the assumption of the solid-body, synchronous rotation of the sdOB primary, the measured values of the semi-amplitude K 1 and   V  sin  i   lead to the mass ratio   q = 0.213 ± 0.013  which in turn gives K 2 and thus the masses and radii of both components. The sdOB component appears to be less massive than assumed before,   M 1= 0.25 ± 0.05 M  , but the secondary has its mass–radius parameters close to theoretically predicted for a brown dwarf,   M 2= 0.054 ± 0.010 M  and   R 2= 0.089 ± 0.005 R  . Our results do not agree with the recent determination of Vŭcković et al. based on a K 2 estimate from line-profile asymmetries.  相似文献   

20.
Eclipsing phenomena of the inner binary with a period of 756 d in the triple symbiotic system CH Cyg may have been detected in detailed spectrophotometric observations. The eclipse of the hot component by the red giant started on 1994 October 11 and finished between 1995 January 8 and 18. The ingress duration was less than one day. The radius of the red giant is estimated to be 288 ± 15 R⊙ from the duration of the eclipse. Assuming the bolometric correction of the red giant (M7 III) as 4, the distance to this object is estimated to be 307 ± 32 pc, which agrees well with that obtained in the observations by Hipparcos . The interstellar extinction in the direction of this object may be much lower than that in the nearby areas. It has been suggested that the outer binary system with an orbital period of about 15 yr is an eclipsing one. It seems unlikely, however, that the variation of the activity of this object with a time-scale of more than 10 yr was a result of eclipses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号