首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
腾冲火山区的地壳厚度和平均泊松比研究   总被引:2,自引:1,他引:1       下载免费PDF全文
胥颐  李雪垒  汪晟 《地球物理学报》2017,60(6):2256-2264
腾冲是青藏高原东南缘重要的第四纪火山活动区域,全新世以来的火山主要集中在腾冲盆地的中央,由北向南形成一个串珠状的火山链.为了深入探索这一火山区的深部结构和岩浆活动特征,我们在腾冲北部开展了为期一年的流动地震观测,利用接收函数方法计算了台站下方的地壳厚度、平均波速比和泊松比,研究结果揭示出测线下方地壳结构与岩浆活动及火山分布的对应关系.测线北部7个台站的地壳厚度在35.4~37.6 km之间,平均波速比为1.82~1.92、泊松比为0.28~0.31,其中马站附近莫霍面抬升幅度最大,与相邻地区莫霍面深度相差1~2 km,平均波速比和泊松比也达到最大值.相比之下,测线南端两个台站的地壳厚度接近40 km,平均波速比和泊松比仅为1.61~1.64和0.18~0.20,与测线北部7个台站的地壳结构相差甚大.分析表明地幔上涌对火山区莫霍面的局部抬升产生了一定影响,火山湖、黑空山、大-小空山和打鹰山下方应该存在一个相互联通的壳内岩浆囊.该岩浆囊在南北方向上的尺度约为20 km,热流活动以及幔源物质的侵入是地壳平均波速比和泊松比偏高的主要原因,它与热海附近的地温异常区分属两个不同的壳内岩浆存储系统.  相似文献   

2.
利用位于新疆塔里木盆地的巴楚地震台(BCH)和西昆仑山区的塔什库尔干地震台(TAG)多年记录的高质量远震波形数据,应用接收函数H-k叠加方法研究了台站下方的地壳结构。研究结果显示,BCH和TAG地震台下方地壳厚度差异分明,区域地壳厚度与地形有很好的对应关系;两个台都具有高的地壳平均波速比Vp/Vs值。BCH台下方的地壳厚度为44km、地壳内的平均波速比为1.849,在该台地壳中部21km处存在清晰的间断面,该间断面内存在低的平均P波波速和作/K值,该间断面的深度与邻近巴楚台的伽师震源区的精确定位的震源深度下界面一致,可能为地壳内的脆.韧转换带。TAG台下方的地壳厚度为69km,地壳内的平均波速比为1.847,较厚的地壳和高波速比可能表明该台下地壳的物质易于发生塑性流动,为地壳的变形和增厚创造了条件。  相似文献   

3.
利用腾冲及其邻区架设的23个台站的远震波形资料,应用接收函数及时间域的线性反演方法反演了各台站下方的S波速度结构,分析该区域的地壳速度结构特征,结果表明:腾冲及其邻区莫霍面深度为39 km左右,整个研究区域地壳厚度从南(32 km)到北(42 km)逐渐增加。不同深度的S波速度结构显示,腾冲附近的中下地壳(30 km附近)呈现为明显低速区,该低速区以腾冲为中心展布,范围约为30 km。低速异常区域与地壳内的岩浆活动和部分熔融物质有关,深部熔融物质为腾冲地区带来了丰富的地热资源。  相似文献   

4.
长白山-镜泊湖火山区地壳结构接收函数研究   总被引:13,自引:4,他引:9       下载免费PDF全文
利用71个远震的波形资料,用接收函数方法提取了布设在长白山—镜泊湖火山区的34个宽频带流动数字地震台站的接收函数,通过对接收函数反演,获得了台站下方的S波速度结构.研究结果表明,沈阳—敦化一线莫霍面深度32~33km,向西地壳厚度加厚,到长春附近地壳厚度约为36km.在天池火山口莫霍面深度为达38km,而镜泊湖火山口森林的莫霍面深度约为39km.总体看研究区的地壳厚度是南浅北深.长白山天池火山口附近地下10km左右有一明显的低速层存在;镜泊湖火山口森林附近30km也可能有低速体存在;研究发现莫霍面上S波速度梯度在火山口附近和远离火山口有明显区别.在火山口附近其莫霍面的S波速度梯度比非火山口地区的S波速度梯度明显小,说明火山口下与一般的地壳莫霍面结构有差别.研究发现沈阳—敦化一线两侧的莫霍面深度有较大变化,其位置与地表的敦化—密山断裂基本一致,说明敦化—密山断裂是研究区的一条非常重要的地质构造带.  相似文献   

5.
提取宁夏银川台远震P波接收函数,计算了台站下方地壳厚度和波速比,得出银川台下方地壳厚度为48.0km,体波波速比为1.72。分析认为银川台下方地壳分层结构明显,地壳厚度起伏剧烈,具有较明显的各向异性特征。  相似文献   

6.
普洱、西双版纳地区的速度结构研究   总被引:2,自引:0,他引:2  
利用接收函数方法对2008年普洱、西双版纳区域内6个台站接收到的远震数据进行反演,得到该研究区域内台站下方的速度结构.结果表明:景谷、思茅台下方的莫霍面深度在36km左右,区域南部的孟连、澜沧、勐腊台下方的地壳厚度有轻微变薄现象,为32km,景洪台下方地壳厚度最薄,仅为30km.  相似文献   

7.
2006年底,我们沿“张渤地震带”布设了一条从唐海—北京—商都的宽频带地震台阵剖面.本文利用台阵记录的远震波形资料,通过接收函数和面波联合反演对剖面下方100 km深度范围内地壳上地幔S波速度结构进行了研究.结果表明剖面东段莫霍面深度约30~34 km,西段深度约38~42 km,平原与山区的过渡地带地壳厚度变化较快.地壳内部10~20 km深度范围内存在多个低速体.在唐山7.8级地震震区附近Moho面出现小幅度隆起,中地壳存在明显的S波低速体.张家口以西,剖面下方10~20 km范围内存在两个S波低速体,张北6.2级地震发生在这两个低速体之间狭小的高速区. 在观测剖面附近,历史上发生的4个大震都与壳内低速体的分布有关. 张家口以东,上地幔普遍存在低速层,顶部埋深在60~80 km之间,并表现出明显的东部浅西部深的特点.  相似文献   

8.
以西安地震台1992年至2000年记录到的853个远震宽频带数字地震记录为基础,利用远震接收函数的方法反演了西安地震台台基的一维速度结构及莫霍面深度,结果表明,西安地震台下的莫霍面深度为39.7 km,P波速度6.59 km/s,P波与S波速度比为1.65.在反演台下一维速度模型时,对接收函数分别进行了算术平均和4次方根的叠加,对这两种不同的叠加得出了相应的反演结果.由于反演结果的非唯一性,在计算的过程中,加入了平滑参数来约束反演结果,并选择了0.2,0.3,0.4等3个平滑约束值,获得了比较理想的台基一维速度模型.  相似文献   

9.
利用宝清台记录的9个同一方位深远地震资料,使用垂直分量P波接收函数技术,成功分离出莫霍面多次反射透射震相Pp Pmp,根据其到时计算出宝清台下方地壳厚度约33.5 km,与前人研究结果基本一致。  相似文献   

10.
基于我们布设的探测深俯冲的中国东北地震台阵NECsaids台阵和固定地震台长时段的观测记录及NECESSArray流动台阵共计152个台站数据提取得到的33752条P波接收函数,采用H-κ叠加分析和共转换点(CCP)叠加成像等方法进行统一分析处理,并汇集他人接收函数研究结果得到中国东北东南部地区迄今为止最高分辨率的地壳厚度和平均波速比分布图像.对中国东北东南部地区不同构造体的地壳特征综合分析研究表明:研究区不同陆块的地壳属性存在明显差别,张广才岭地块中南部的地壳厚度和波速比与华北克拉通东北缘相当,地壳厚度同地表地形之间显示有明显的正相关关系;松辽地块东南缘地壳最薄、波速比最高,地壳厚度同壳内波速比之间显示出明显的负相关关系;兴凯地块西部地区的地壳结构表现为稍厚的地壳厚度和研究区内最低的壳内波速比,其地壳厚度同壳内波速比之间亦显示出明显的负相关关系;佳木斯地块西南缘在具有"正常"的壳内波速比同时地壳最厚.研究区内的郯庐断裂带北延段在切穿其下Moho面的同时表现出南北分段的特征:北段(44.4°N—47°N)两分支之下的Moho面整体下凹,而南段(41.5°N—43.3°N)两分支之下的Moho面则整体上隆.长白山天池火山下方表现为Moho面下凹沉落及高壳内波速比特征,推测其壳内岩浆囊很可能存在于火山口东北隅至少10 km的范围内.  相似文献   

11.
By using the teleseismic receiver function method, this paper analyzes the crustal thickness and v_P/v_S ratios beneath the 4 National seismic stations (KMI, TNC, CD2 and PZH) in the Sichuan-Yunnan area. This study gives the variance of Moho depths and velocity ratios of the 4 stations in different directions. The results show that the Moho depth beneath the Kunming station is around 50km, and the velocity ratio varies between 1.62 and 1.69. The thickness of crust and the velocity ratio do not change much with the direction. The crust beneath Tengchong station shows clear directivity, being 40.7km thick in the northeast and 49.7km thick in the southeast. The difference of the v_P/v_S values is remarkable between the two directions, reaching 0.2. The Chengdu station also has shallow Moho, about 40km, but is 8km deeper in the northeast and southwest and the velocity ratio has a change of 0.13 between the two directions. The crust beneath the Panzhihua station is stable. In all directions, the Moho depth is around 60km and the v_P/v_S ratio doesn't change significantly.  相似文献   

12.
本文使用位于喜马拉雅东构造结地区布置的24个宽频带地震台站记录的远震波形数据,利用P波接收函数的方法研究了台站下方的Moho面深度、泊松比和地壳速度结构.结果表明,东构造结内Moho面深度呈现出自南西向北东方向逐渐变深的趋势,地壳厚度在54~60 km范围内,其中东久一米林走滑断裂带附近Moho面最浅,东构造结周围拉萨地块的Moho面深度在60 km以上.东构造结西部东久一米林走滑断裂带附近地壳泊松比较高.嘉黎断裂带南北两侧的泊松比差别较大,说明该断裂带两侧地壳结构存在显著差异.东构造结周边拉萨地块地壳内普遍存在低速层,分布在20~40 km深度范围内,厚度约为5~15 km.  相似文献   

13.
根据西秦岭构造带及其周边地区117个宽频带地震台站的高质量波形数据, 利用远震P波接收函数的H-k叠加方法, 求得地壳厚度和平均波速比. 通过分析地壳厚度、 波速比及其关系和接收函数CCP叠加剖面, 研究了该区域的地壳结构特征. 结果表明, 研究区域内地壳结构差异大, 呈过渡带特征. 地壳厚度总体上呈北北西向分布, 自西南向东北逐渐减小. 羌塘块体地壳厚度为72 km, 渭河盆地附近为39 km. 西秦岭构造带的地壳厚度为42—56 km, 南北向莫霍界面平坦. 研究区域P波与S波波速比平均为1.74, 其中西秦岭构造带平均为1.72. 较低的波速比主要分布在西秦岭构造带、 祁连山块体、 松潘—甘孜地块北部以及香山—天景山断裂区域, 这可能是由于含长英质酸性岩组分的上地壳叠置增厚而导致的. 该区域缺少超高波速比, 表明这一区域发生岩浆底侵或上地壳熔融的可能性很小. 综合分析表明, 西秦岭构造带及邻区的地壳结构主要是由于青藏高原隆升并在向东北向扩张中受到周边块体的阻挡而引起的地壳构造变形所致. 西秦岭构造带的莫霍界面变化和波速比分布与该构造带经历碰撞地壳增厚后的伸展走滑运动有关.   相似文献   

14.
Using seismic data of about one year recorded by 18 broadband stations of ASCENT project,we obtained 2547 receiver functions in the northeastern Tibetan Plateau.The Moho depths under 14 stations were calculated by applying the H-κ domain search algorithm.The Moho depths under the stations with lower signal-noise ratio(SNR) were estimated by the time delay of the PS conversion.Results show that the Moho depth varies in a range of ~40–60 km.The Moho near the Haiyuan fault is vague,and its depth is larger than those on its two sides.In the Qinling-Qilian Block,the Moho becomes shallower gradually from west to east.To the east of 105°E,the average depth of the Moho is 45 km,whereas the west is 50 km or even deeper.Combining our results with surface wave research,we suggest a boundary between the Qinling and the Qilian Mountains at around 105°E.S wave velocities beneath 15 stations have been obtained through a linear inversion by using Crust2.0 as an initial model,and the crustal thickness that was derived by H-κ domain search algorithm was also taken into account.The results are very similar to the results of previous active source studies.The resulting figure indicates that low velocity layers developed in the middle and lower crust beneath the transition zone of the Tibet Block and western Qinling,which may be related to regional faults and deep earth dynamics.The velocity of the middle and lower crust increases from the Songpan Block to the northeastern margin of Tibetan Plateau.Based on the velocity of the crust,the distribution of the low velocity zone and the composition of the curst(Poisson's ratio),we infer that the crust thickening results from the crust shortening along the direction of compression.  相似文献   

15.
Receiver functions are widely employed to detect P-to-S converted waves and are especially useful to image seismic discontinuities in the crust. In this study we used the P receiver function technique to investigate the velocity structure of the crust beneath the Northwest Zagros and Central Iran and map out the lateral variation of the Moho boundary within this area. Our dataset includes teleseismic data (M b ≥ 5.5, epicentral distance from 30° to 95°) recorded at 12 three-component short-period stations of Kermanshah, Isfahan and Yazd telemetry seismic networks. Our results obtained from P receiver functions indicate clear Ps conversions at the Moho boundary. The Moho depths were firstly estimated from the delay time of the Moho converted phase relative to the direct P wave beneath each network. Then, we used the P receiver function inversion to find the properties of the Moho discontinuity such as depth and velocity contrast. Our results obtained from PRF are in good agreement with those obtained from the P receiver function modeling. We found an average Moho depth of about 42 km beneath the Northwest Zagros increasing toward the Sanandaj-Sirjan Metamorphic Zone and reaches 51 km, where two crusts (Zagros and Central Iran) are assumed to be superposed. The Moho depth decreases toward the Urmieh-Dokhtar Cenozoic volcanic belt and reaches 43 km beneath this area. We found a relatively flat Moho beneath the Central Iran where, the average crustal thickness is about 42 km. Our P receiver function modeling revealed a shear wave velocity of 3.6 km/s in the crust of Northwest Zagros and Central Iran increasing to 4.5 km/s beneath the Moho boundary. The average shear wave velocity in the crust of UDMA as SSZ is 3.6 km/s, which reaches to 4.0 km/s while in SSZ increases to 4.3 km/s beneath the Moho.  相似文献   

16.
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.  相似文献   

17.
云南数字地震台站下方的S波速度结构研究   总被引:36,自引:13,他引:36       下载免费PDF全文
通过对云南数字地震台站的宽频带远震接收函数反演,获得了云南地区数字地震台站下方0-0km深度范围的S波速度结构.结果表明,云南地区地壳厚度变化剧烈,中甸、丽江等西北部地区,地壳厚度达62km左右,景洪、思茅和沧源等南部地区,地壳厚度仅为32-34km.厚地壳从西北部向东南方向伸展,厚度和范围逐渐减小,至通海一带地壳厚度减为42km,其形态和范围与小江断裂和元江断裂围成的川滇菱形块体相一致.地壳厚度较小的东、南部地区Moho面速度界面明显;在地壳厚度较大或变化剧烈的地区,Moho面大多表现为S波速度的高梯度带.云南地区S波速度结构具有很强的横向不均匀性.km深度以上,北部地区S波速度明显低于南部地区,在-20km深度范围内,北部地区的S波速度比南部地区高.地壳内部S波速度界面的连续性较差,低速层的深度和范围不一,近一半的台站下方不存在明显的低速层.受南部地区上地幔的影响,40-50km深度范围内,S波速度南部高、北部低,高速区随深度增加逐渐向北推移,低速异常区形态与川滇菱形块体的形态趋向一致.70-80km深度的上地幔速度分布与云南地区大震分布具有一定的相关性.  相似文献   

18.
利用中国东北布设的流动地震台阵(116个)以及国家和区域台网(121个)的宽频带台站记录的824个远震事件,采用P波接收函数CCP叠加和H-K叠加两种方法获得了研究区详尽的地壳厚度图像.研究结果显示,两种方法获得的地壳厚度分布特征具有很好的一致性,中国东北下方地壳厚度存在明显的东西横向差异.重力梯度带西侧和佳木斯地块的台站下方地壳较厚,介于36~41 km之间,而在兴蒙槽地褶带中重力梯度带往东从36 km减薄至34 km左右.松辽盆地北侧、东侧和南侧地壳厚度较薄,为29~34 km,反映了该区复杂的地壳变形过程.CCP剖面显示郯庐断裂深切地壳,敦化—密山断裂下方莫霍面出现错断.H-K叠加得到的地壳平均泊松比显示,东北地区绝大部分台站下方的泊松比值较大,0.24~0.29.长白山、松辽盆地东部、燕山台隆东部和大兴安岭北部,泊松比值达到0.27~0.30,可能有幔源物质上涌,下地壳铁镁组分含量增加.  相似文献   

19.
We computed P and S receiver functions to investigate the lithospheric structure beneath the northwest Iran and compute the Vp/Vs ratio within the crust of this seismologically active area. Our results enabled us to map the lateral variations of the Moho as well as those of the lithosphere–asthenosphere boundary (LAB) beneath this region. We selected data from teleseismic events (Mb?>?5.5, epicentral distance between 30° and 95° for P receiver functions and Mb?>?5.7, epicentral distance between 60° and 85° for S receiver functions) recorded from 1995 to 2008 at 8 three-component short-period stations of Tabriz Telemetry Seismic Network. Our results obtained from P receiver functions indicate clear conversions at the Moho boundary. The Moho depth was firstly estimated from the delay time of the Moho converted phase relative to the direct P wave. Then we used the H-Vp/Vs stacking algorithm of Zhu and Kanamori to estimate the crustal thickness and Vp/Vs ratio underneath the stations with clear Moho multiples. We found an average Moho depth of 48 km, which varies between 38.5 and 53 km. The Moho boundary showed a significant deepening towards east and north. This may reveal a crustal thickening towards northeast possibly due to the collision between the Central Iran and South Caspian plates. The obtained average Vp/Vs ratio was estimated to be 1.76, which varies between 1.73 and 1.82. The crustal structure was also determined by modeling of P receiver functions. We obtained a three-layered model for the crust beneath this area. The thickness of the layers is estimated to be 6–11, 18–35, and 38–53 km, respectively. The average of the shear wave velocity was calculated to be 3.4 km/s in the crust and reaches 4.3 km/s below the Moho discontinuity. The crustal thickness values obtained from P receiver functions are in good agreement with those derived by S receiver functions. In addition, clear conversions with negative polarity were observed at ~8.7 s in S receiver functions, which could be related to the conversion at the LAB. This may show a relatively thin continental lithosphere of about 85 km implying that the lithosphere was influenced by various geodynamical reworking processes in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号