首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Approximation Algorithms for the Directed k-Tour and k-Stroll Problems   总被引:1,自引:0,他引:1  
We consider two natural generalizations of the Asymmetric Traveling Salesman problem: the k-Stroll and the k-Tour problems. The input to the k-Stroll problem is a directed n-vertex graph with nonnegative edge lengths, an integer k, as well as two special vertices s and t. The goal is to find a minimum-length s-t walk, containing at least k distinct vertices (including the endpoints s,t). The k-Tour problem can be viewed as a special case of k-Stroll, where s=t. That is, the walk is required to be a tour, containing some pre-specified vertex s. When k=n, the k-Stroll problem becomes equivalent to Asymmetric Traveling Salesman Path, and k-Tour to Asymmetric Traveling Salesman. Our main result is a polylogarithmic approximation algorithm for the k-Stroll problem. Prior to our work, only bicriteria (O(log2 k),3)-approximation algorithms have been known, producing walks whose length is bounded by 3OPT, while the number of vertices visited is Ω(k/log2 k). We also show a simple O(log2 n/loglogn)-approximation algorithm for the k-Tour problem. The best previously known approximation algorithms achieved min(O(log3 k),O(log2 n?logk/loglogn)) approximation in polynomial time, and O(log2 k) approximation in quasipolynomial time.  相似文献   

2.
Zeev Nutov 《Algorithmica》2012,63(1-2):398-410
We consider the (undirected) Node Connectivity Augmentation (NCA) problem: given a graph J=(V,E J ) and connectivity requirements $\{r(u,v): u,v \in V\}$ , find a minimum size set I of new edges (any edge is allowed) such that the graph JI contains r(u,v) internally-disjoint uv-paths, for all u,vV. In Rooted NCA there is sV such that r(u,v)>0 implies u=s or v=s. For large values of k=max? u,vV r(u,v), NCA is at least as hard to approximate as Label-Cover and thus it is unlikely to admit an approximation ratio polylogarithmic in k. Rooted NCA is at least as hard to approximate as Hitting-Set. The previously best approximation ratios for the problem were O(kln?n) for NCA and O(ln?n) for Rooted NCA. In this paper we give an approximation algorithm with ratios O(kln?2 k) for NCA and O(ln?2 k) for Rooted NCA. This is the first approximation algorithm with ratio independent of?n, and thus is a constant for any fixed k. Our algorithm is based on the following new structural result which is of independent interest. If $\mathcal{D}$ is a set of node pairs in a graph?J, then the maximum degree in the hypergraph formed by the inclusion minimal tight sets separating at least one pair in $\mathcal{D}$ is O(? 2), where ? is the maximum connectivity in J of a pair in $\mathcal{D}$ .  相似文献   

3.
We explore relationships between circuit complexity, the complexity of generating circuits, and algorithms for analyzing circuits. Our results can be divided into two parts:
  1. Lower bounds against medium-uniform circuits. Informally, a circuit class is “medium uniform” if it can be generated by an algorithmic process that is somewhat complex (stronger than LOGTIME) but not infeasible. Using a new kind of indirect diagonalization argument, we prove several new unconditional lower bounds against medium-uniform circuit classes, including: ? For all k, P is not contained in P-uniform SIZE(n k ). That is, for all k, there is a language \({L_k \in {\textsf P}}\) that does not have O(n k )-size circuits constructible in polynomial time. This improves Kannan’s lower bound from 1982 that NP is not in P-uniform SIZE(n k ) for any fixed k. ? For all k, NP is not in \({{\textsf P}^{\textsf NP}_{||}-{\textsf {uniform SIZE}}(n^k)}\) .This also improves Kannan’s theorem, but in a different way: the uniformity condition on the circuits is stronger than that on the language itself. ? For all k, LOGSPACE does not have LOGSPACE-uniform branching programs of size n k .
  2. Eliminating non-uniformity and (non-uniform) circuit lower bounds. We complement these results by showing how to convert any potential simulation of LOGTIME-uniform NC 1 in ACC 0/poly or TC 0/poly into a medium-uniform simulation using small advice. This lemma can be used to simplify the proof that faster SAT algorithms imply NEXP circuit lower bounds and leads to the following new connection: ? Consider the following task: given a TC 0 circuit C of n O(1) size, output yes when C is unsatisfiable, and output no when C has at least 2 n-2 satisfying assignments. (Behavior on other inputs can be arbitrary.) Clearly, this problem can be solved efficiently using randomness. If this problem can be solved deterministically in 2 n-ω(log n) time, then \({{\textsf{NEXP}} \not \subset {\textsf{TC}}^0/{\rm poly}}\) .
Another application is to derandomize randomized TC 0 simulations of NC 1 on almost all inputs: ?Suppose \({{\textsf{NC}}^1 \subseteq {\textsf{BPTC}}^0}\) . Then, for every ε > 0 and every language L in NC 1, there is a LOGTIME?uniform TC 0 circuit family of polynomial size recognizing a language L′ such that L and L′ differ on at most \({2^{n^{\epsilon}}}\) inputs of length n, for all n.  相似文献   

4.
Given a set of pointsV in the plane, the Euclidean bottleneck matching problem is to match each point with some other point such that the longest Euclidean distance between matched points, resulting from this matching, is minimized. To solve this problem, we definek-relative neighborhood graphs, (kRNG) which are derived from Toussaint's relative neighborhood graphs (RNG). Two points are calledk-relative neighbors if and only if there are less thank points ofV which are closer to both of the two points than the two points are to each other. AkRNG is an undirected graph (V,E r k ) whereE r k is the set of pairs of points ofV which arek-relative neighbors. We prove that there exists an optimal solution of the Euclidean bottleneck matching problem which is a subset ofE r 17 . We also prove that ¦E r k ¦ < 18kn wheren is the number of points in setV. Our algorithm would construct a 17RNG first. This takesO(n 2) time. We then use Gabow and Tarjan's bottleneck maximum cardinality matching algorithm for general graphs whose time-complexity isO((n logn)0.5 m), wherem is the number of edges in the graph, to solve the bottleneck maximum cardinality matching problem in the 17RNG. This takesO(n 1.5 log0.5 n) time. The total time-complexity of our algorithm for the Euclidean bottleneck matching problem isO(n 2 +n 1.5 log0.5 n).  相似文献   

5.
We report progress on the NL versus UL problem.
  • We show that counting the number of s-t paths in graphs where the number of s-v paths for any v is bounded by a polynomial can be done in FUL: the unambiguous log-space function class. Several new upper bounds follow from this including ${{{ReachFewL} \subseteq {UL}}}$ and ${{{LFew} \subseteq {UL}^{FewL}}}$
  • We investigate the complexity of min-uniqueness—a central notion in studying the NL versus UL problem. In this regard we revisit the class OptL[log n] and introduce UOptL[log n], an unambiguous version of OptL[log n]. We investigate the relation between UOptL[log n] and other existing complexity classes.
  • We consider the unambiguous hierarchies over UL and UOptL[log n]. We show that the hierarchy over UOptL[log n] collapses. This implies that ${{{ULH} \subseteq {L}^{{promiseUL}}}}$ thus collapsing the UL hierarchy.
  • We show that the reachability problem over graphs embedded on 3 pages is complete for NL. This contrasts with the reachability problem over graphs embedded on 2 pages, which is log-space equivalent to the reachability problem in planar graphs and hence is in UL.
  •   相似文献   

    6.
    Reachability and shortest path problems are NL-complete for general graphs. They are known to be in L for graphs of tree-width 2 (Jakoby and Tantau in Proceedings of FSTTCS’07: The 27th Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 216–227, 2007). In this paper, we improve these bounds for k-trees, where k is a constant. In particular, the main results of our paper are log-space algorithms for reachability in directed k-trees, and for computation of shortest and longest paths in directed acyclic k-trees. Besides the path problems mentioned above, we also consider the problem of deciding whether a k-tree has a perfect matching (decision version), and if so, finding a perfect matching (search version), and prove that these two problems are L-complete. These problems are known to be in P and in RNC for general graphs, and in SPL for planar bipartite graphs, as shown in Datta et al. (Theory Comput. Syst. 47:737–757, 2010). Our results settle the complexity of these problems for the class of k-trees. The results are also applicable for bounded tree-width graphs, when a tree-decomposition is given as input. The technique central to our algorithms is a careful implementation of the divide-and-conquer approach in log-space, along with some ideas from Jakoby and Tantau (Proceedings of FSTTCS’07: The 27th Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 216–227, 2007) and Limaye et al. (Theory Comput. Syst. 46(3):499–522, 2010).  相似文献   

    7.
    The Contractibility problem takes as input two graphs G and H, and the task is to decide whether H can be obtained from G by a sequence of edge contractions. The Induced Minor and Induced Topological Minor problems are similar, but the first allows both edge contractions and vertex deletions, whereas the latter allows only vertex deletions and vertex dissolutions. All three problems are NP-complete, even for certain fixed graphs H. We show that these problems can be solved in polynomial time for every fixed H when the input graph G is chordal. Our results can be considered tight, since these problems are known to be W[1]-hard on chordal graphs when parameterized by the size of H. To solve Contractibility and Induced Minor, we define and use a generalization of the classic Disjoint Paths problem, where we require the vertices of each of the k paths to be chosen from a specified set. We prove that this variant is NP-complete even when k=2, but that it is polynomial-time solvable on chordal graphs for every fixed k. Our algorithm for Induced Topological Minor is based on another generalization of Disjoint Paths called Induced Disjoint Paths, where the vertices from different paths may no longer be adjacent. We show that this problem, which is known to be NP-complete when k=2, can be solved in polynomial time on chordal graphs even when k is part of the input. Our results fit into the general framework of graph containment problems, where the aim is to decide whether a graph can be modified into another graph by a sequence of specified graph operations. Allowing combinations of the four well-known operations edge deletion, edge contraction, vertex deletion, and vertex dissolution results in the following ten containment relations: (induced) minor, (induced) topological minor, (induced) subgraph, (induced) spanning subgraph, dissolution, and contraction. Our results, combined with existing results, settle the complexity of each of the ten corresponding containment problems on chordal graphs.  相似文献   

    8.
    Given a simple undirected graph G = (V, E) and an integer k < |V|, the Sparsest k-Subgraph problem asks for a set of k vertices which induces the minimum number of edges. As a generalization of the classical independent set problem, Sparsest k-Subgraph is ????-hard and even not approximable unless ?????? in general graphs. Thus, we investigate Sparsest k-Subgraph in graph classes where independent set is polynomial-time solvable, such as subclasses of perfect graphs. Our two main results are the ????-hardness of Sparsest k-Subgraph on chordal graphs, and a greedy 2-approximation algorithm. Finally, we also show how to derive a P T A S for Sparsest k-Subgraph on proper interval graphs.  相似文献   

    9.
    We strengthen a previously known connection between the size complexity of two-way finite automata ( ) and the space complexity of Turing machines (tms). Specifically, we prove that
  • every s-state has a poly(s)-state that agrees with it on all inputs of length ≤s if and only if NL?L/poly, and
  • every s-state has a poly(s)-state that agrees with it on all inputs of length ≤2 s if and only if NLL?LL/polylog.
  • Here, and are the deterministic and nondeterministic , NL and L/poly are the standard classes of languages recognizable in logarithmic space by nondeterministic tms and by deterministic tms with access to polynomially long advice, and NLL and LL/polylog are the corresponding complexity classes for space O(loglogn) and advice length poly(logn). Our arguments strengthen and extend an old theorem by Berman and Lingas and can be used to obtain variants of the above statements for other modes of computation or other combinations of bounds for the input length, the space usage, and the length of advice.  相似文献   

    10.
    Vertex deletion and edge deletion problems play a central role in parameterized complexity. Examples include classical problems like Feedback Vertex Set, Odd Cycle Transversal, and Chordal Deletion. The study of analogous edge contraction problems has so far been left largely unexplored from a parameterized perspective. We consider two basic problems of this type: Tree Contraction and Path Contraction. These two problems take as input an undirected graph G on n vertices and an integer k, and the task is to determine whether we can obtain a tree or a path, respectively, by a sequence of at most k edge contractions in G. For Tree Contraction, we present a randomized 4 k ? n O(1) time polynomial-space algorithm, as well as a deterministic 4.98 k ? n O(1) time algorithm, based on a variant of the color coding technique of Alon, Yuster and Zwick. We also present a deterministic 2 k+o(k)+n O(1) time algorithm for Path Contraction. Furthermore, we show that Path Contraction has a kernel with at most 5k+3 vertices, while Tree Contraction does not have a polynomial kernel unless NP ? coNP/poly. We find the latter result surprising because of the connection between Tree Contraction and Feedback Vertex Set, which is known to have a kernel with 4k 2 vertices.  相似文献   

    11.
    We study the Cutwidth problem, where the input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP?coNP/poly. Our kernelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP, Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both Treewidth and Pathwidth parameterized by vertex cover do admit polynomial kernels.  相似文献   

    12.
    In this paper, we show how to exploit the structure of some automata-based construction to efficiently solve the LTL synthesis problem. We focus on a construction proposed in Schewe and Finkbeiner that reduces the synthesis problem to a safety game, which can then be solved by computing the solution of the classical fixpoint equation νX.SafeCPre(X), where CPre(X) are the controllable predecessors of X. We have shown in previous works that the sets computed during the fixpoint algorithm can be equipped with a partial order that allows one to represent them very compactly, by the antichain of their maximal elements. However the computation of CPre(X) cannot be done in polynomial time when X is represented by an antichain (unless P = NP). This motivates the use of SAT solvers to compute CPre(X). Also, we show that the CPre operator can be replaced by a weaker operator CPre crit where the adversary is restricted to play a subset of critical signals. We show that the fixpoints of the two operators coincide, and so, instead of applying iteratively CPre, we can apply iteratively CPre crit. In practice, this leads to important improvements on previous LTL synthesis methods. The reduction to SAT problems and the weakening of the CPre operator into CPre crit and their performance evaluations are new.  相似文献   

    13.
    We introduce two new natural decision problems, denoted as ? RATIONAL NASH and ? IRRATIONAL NASH, pertinent to the rationality and irrationality, respectively, of Nash equilibria for (finite) strategic games. These problems ask, given a strategic game, whether or not it admits (i) a rational Nash equilibrium where all probabilities are rational numbers, and (ii) an irrational Nash equilibrium where at least one probability is irrational, respectively. We are interested here in the complexities of ? RATIONAL NASH and ? IRRATIONAL NASH. Towards this end, we study two other decision problems, denoted as NASH-EQUIVALENCE and NASH-REDUCTION, pertinent to some mutual properties of the sets of Nash equilibria of two given strategic games with the same number of players. The problem NASH-EQUIVALENCE asks whether or not the two sets of Nash equilibria coincide; we identify a restriction of its complementary problem that witnesses ? RATIONAL NASH. The problem NASH-REDUCTION asks whether or not there is a so called Nash reduction: a suitable map between corresponding strategy sets of players that yields a Nash equilibrium of the former game from a Nash equilibrium of the latter game; we identify a restriction of NASH-REDUCTION that witnesses ? IRRATIONAL NASH. As our main result, we provide two distinct reductions to simultaneously show that (i) NASH-EQUIVALENCE is co- $\mathcal{NP}$ -hard and ? RATIONAL NASH is $\mathcal{NP}$ -hard, and (ii) NASH-REDUCTION and ? IRRATIONAL NASH are both $\mathcal{NP}$ -hard, respectively. The reductions significantly extend techniques previously employed by Conitzer and Sandholm (Proceedings of the 18th Joint Conference on Artificial Intelligence, pp. 765–771, 2003; Games Econ. Behav. 63(2), 621–641, 2008).  相似文献   

    14.
    We study the problem of computing canonical forms for graphs and hypergraphs under Abelian group action and show tight complexity bounds. Our approach is algebraic. We transform the problem of computing canonical forms for graphs to the problem of computing canonical forms for associated algebraic structures, and we develop parallel algorithms for these associated problems.
    1. In our first result we show that the problem of computing canonical labelings for hypergraphs of color class size 2 is logspace Turing equivalent to solving a system of linear equations over the field $\mathbb {F} _{2}$ . This implies a deterministic NC 2 algorithm for the problem.
    2. Similarly, we show that the problem of canonical labeling graphs and hypergraphs under arbitrary Abelian permutation group action is fairly well characterized by the problem of computing the integer determinant. In particular, this yields deterministic NC 3 and randomized NC 2 algorithms for the problem.
      相似文献   

    15.
    By terms-allowed-in-formulas capacity, Artemov’s Logic of Proofs LP Artemov includes self-referential formulas of the form t:?(t) that play a crucial role in the realization of modal logic S4 in LP, and in the Brouwer–Heyting–Kolmogorov semantics of intuitionistic logic via LP. In an earlier work appeared in the Proceedings of CSR 2010 the author defined prehistoric loop in a sequent calculus of S4, and verified its necessity to self-referentiality in S4?LP realization. In this extended version we generalize results there to T and K4, two modal logics smaller than S4 that yet call for self-referentiality in their realizations into corresponding justification logics JT and J4.  相似文献   

    16.
    We study the problem of packing element-disjoint Steiner trees in graphs. We are given a graph and a designated subset of terminal nodes, and the goal is to find a maximum cardinality set of element-disjoint trees such that each tree contains every terminal node. An element means a non-terminal node or an edge. (Thus, each non-terminal node and each edge must be in at most one of the trees.) We show that the problem is APX-hard when there are only three terminal nodes, thus answering an open question. Our main focus is on the special case when the graph is planar. We show that the problem of finding two element-disjoint Steiner trees in a planar graph is NP-hard. Similarly, the problem of finding two edge-disjoint Steiner trees in a planar graph is NP-hard. We design an algorithm for planar graphs that achieves an approximation guarantee close to 2. In fact, given a planar graph that is k element-connected on the terminals (k is an upper bound on the number of element-disjoint Steiner trees), the algorithm returns $\lfloor\frac{k}{2} \rfloor-1$ element-disjoint Steiner trees. Using this algorithm, we get an approximation algorithm for the edge-disjoint version of the problem on planar graphs that improves on the previous approximation guarantees. We also show that the natural LP relaxation of the planar problem has an integrality ratio approaching?2.  相似文献   

    17.
    We study a simple technique, originally presented by Herlihy (ACM Trans. Program. Lang. Syst. 15(5):745–770, 1993), for executing concurrently, in a wait-free manner, blocks of code that have been programmed for sequential execution and require significant synchronization in order to be performed in parallel. We first present an implementation of this technique, called Sim, which employs a collect object. We describe a simple implementation of a collect object from a single shared object that supports atomic Add (or XOR) in addition to read; this implementation has step complexity O(1). By plugging in to Sim this implementation, Sim exhibits constant step complexity as well. This allows us to derive lower bounds on the step complexity of implementations of several shared objects, like Add, XOR, collect, and snapshot objects, from LL/SC objects. We then present a practical version of Sim, called PSim, which is implemented in a real shared-memory machine. From a theoretical perspective, PSim has worse step complexity than Sim, its theoretical analog; in practice though, we experimentally show that PSim is highly-efficient: it outperforms several state-of-the-art lock-based and lock-free synchronization techniques, and this given that it is wait-free, i.e. that it satisfies a stronger progress condition than all the algorithms that it outperforms. We have used PSim to get highly-efficient wait-free implementations of stacks and queues.  相似文献   

    18.
    We consider transactional memory contention management in the context of balanced workloads, where if a transaction is writing, the number of write operations it performs is a constant fraction of its total reads and writes. We explore the theoretical performance boundaries of contention management in balanced workloads from the worst-case perspective by presenting and analyzing two new polynomial time contention management algorithms. We analyze the performance of a contention management algorithm by comparison with an optimal offline contention management algorithm to provide a competitive ratio. The first algorithm Clairvoyant is $O(\sqrt{s})$ -competitive, where s is the number of shared resources. This algorithm depends on explicitly knowing the conflict graph at each time step of execution. The second algorithm Non-Clairvoyant is $O(\sqrt{s} \cdot \log n)$ -competitive, with high probability, which is only a O(log?n) factor worse, but does not require knowledge of the conflict graph, where n is the number of transactions. Both of these algorithms are greedy. We also prove that the performance of Clairvoyant is close to optimal, since there is no polynomial time contention management algorithm for the balanced transaction scheduling problem that is better than $O((\sqrt{s})^{1-\varepsilon})$ -competitive for any constant ε>0, unless NP?ZPP. To our knowledge, these results are significant improvements over the best previously known O(s) competitive ratio bound.  相似文献   

    19.
    The Pathwidth One Vertex Deletion (POVD) problem asks whether, given an undirected graph?G and an integer k, one can delete at most k vertices from?G so that the remaining graph has pathwidth at most 1. The question can be considered as a natural variation of the extensively studied Feedback Vertex Set (FVS) problem, where the deletion of at most k vertices has to result in the remaining graph having treewidth at most 1 (i.e., being a forest). Recently Philip et?al. (WG, Lecture Notes in Computer Science, vol.?6410, pp.?196?C207, 2010) initiated the study of the parameterized complexity of POVD, showing a quartic kernel and an algorithm which runs in time 7 k n O(1). In this article we improve these results by showing a quadratic kernel and an algorithm with time complexity 4.65 k n O(1), thus obtaining almost tight kernelization bounds when compared to the general result of Dell and van Melkebeek (STOC, pp.?251?C260, ACM, New York, 2010). Techniques used in the kernelization are based on the quadratic kernel for FVS, due to Thomassé (ACM Trans. Algorithms 6(2), 2010).  相似文献   

    20.
    In the uniform circuit model of computation, the width of a boolean circuit exactly characterizes the “space” complexity of the computed function. Looking for a similar relationship in Valiant’s algebraic model of computation, we propose width of an arithmetic circuit as a possible measure of space. In the uniform setting, we show that our definition coincides with that of VPSPACE at polynomial width. We introduce the class VL as an algebraic variant of deterministic log-space L; VL is a subclass of VP. Further, to define algebraic variants of non-deterministic space-bounded classes, we introduce the notion of “read-once” certificates for arithmetic circuits. We show that polynomial-size algebraic branching programs (an algebraic analog of NL) can be expressed as read-once exponential sums over polynomials in ${{\sf VL}, {\it i.e.}\quad{\sf VBP} \in \Sigma^R \cdot {\sf VL}}$ . Thus, read-once exponential sums can be viewed as a reasonable way of capturing space-bounded non-determinism. We also show that Σ R ·VBPVBP, i.e. VBPs are stable under read-once exponential sums. Though the best upper bound we have for Σ R ·VL itself is VNP, we can obtain better upper bounds for width-bounded multiplicatively disjoint (md-) circuits. Without the width restriction, md- arithmetic circuits are known to capture all of VP. We show that read-once exponential sums over md- constant-width arithmetic circuits are within VP and that read-once exponential sums over md- polylog-width arithmetic circuits are within VQP. We also show that exponential sums of a skew formula cannot represent the determinant polynomial.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

    京公网安备 11010802026262号