首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Good quality contacts between metal and silicon emitter are crucial for high crystalline solar cell efficiencies. We investigate the impact of defects originating from electrically inactive phosphorus on contact formation within silver thick film metallized silicon solar cells. For this purpose, emitters with varying sheet resistance, depth, and dead layer were metallized with silver pastes from different generations. Macroscopic contact resistivity measurements were compared with the microscopic contact configurations studied by scanning electron microscopy. The density of direct contacts between Ag crystallites grown into Si and the Ag finger bulk is essential for low contact resistivity. The presence of glass‐free regions needed for such direct contacts depends on the paste composition and on the surface texture, and does not vary with the Si emitter properties. Indeed, the decrease in contact resistivity correlates with increasing density of Ag crystallites embedded in the Si surface. Furthermore, the density of Si surface‐embedded Ag crystallites scales proportional to the electrically inactive P and is independent of the sheet resistance. Using the newest silver paste, the Ag crystallite density is independent of the emitter doping, but the Ag crystallite size increases as a function of the thickness of the dead layer. Transmission electron microscopy characterization of the excess P‐doped Si crystal lattice shows that significant strain and Si bond weakening may play a major role for both Ag crystallite nucleation and growth. Finally, we studied Si crystal defects by metallizing nanocracks, dislocations, and grain boundaries and found that Ag crystallite nucleation is defect‐property dependent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, the back surface field (BSF) formation of locally alloyed Al‐paste contacts employed in recent industrial passivated emitter and rear cell solar cell designs is discussed. A predictive model for resulting local BSF thickness and doping profile is proposed that is based on the time‐dependent Si distribution in the molten Al paste during the firing step. Diffusion of Si in liquid Al away from the contact points is identified as the main differentiator to a full‐area Al‐BSF; therefore, a diffusion‐based solution to the involved differential equation is pursued. Data on the Si distribution in the Al and the resulting BSF structures are experimentally obtained by firing samples with different metal contact geometries, peak temperature times and pastes as well as by investigating them by means of scanning electron microscopy and energy dispersive X‐ray spectroscopy. The Si diffusivity in the Al paste is then calculated from these results. It is found that the diffusivity is strongly dependent on the paste composition. Furthermore, the local BSF doping profiles and thicknesses resulting from different contact geometries and paste parameters are calculated from the Si concentration at the contact sites, the diffusivity and solubility data. These profiles are then used in a finite element device simulator to evaluate their performance on solar cell level. With this approach, a beneficial paste composition for any given rear contact geometry can be determined. Two line widths are investigated, and the effects of the different paste properties are discussed in the light of the solar cell results obtained by simulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The aim of this study is to understand the effect of the glass frit chemistry used in thick-film Ag pastes on the electrical performance of the silicon solar cell. The study focuses on the physical behavior of the glass frit during heat treatment as well as the resulting Ag−Si contact interface structure. We observe that the glass frit transition temperature (Tg) and softening characteristics play a critical role in the contact interface structure. The glass transition temperature also significantly influences the contact ohmicity of the thick-film metal grid. A high glass frit transition temperature generally results in thinner glass regions between the Ag bulk of the grid and the Si emitter. It was found that a glass frit (with high Tg) that crystallizes fast during the firing cycle after etching the silicon nitride and Si emitter results in smaller Ag crystallite precipitation at the contact interface. This results in smaller junction leakage current density (Jo2) and higher open-circuit voltage (Voc). Using high Tg pastes (with the appropriate Ag powder size), greater than 0.78 fill factors and >17.4% efficiency were achieved on 4 cm2 untextured single crystal Si solar cells with 100 Ω/sq emitters.  相似文献   

4.
We present a new non‐destructive mapping technique which yields information on the local series resistance in Si solar cells. The technique is based on microwave photoconductivity decay measurements performed on reverse‐biased Si solar cells. For reverse‐biased devices, the initial decay time measured after a high‐intensity laser pulse is shown to be directly proportional to the local series resistances between the excited area and the cell metallisation. We illustrate how high contact resistance between the fingers and the emitter, resistive back‐surface contacts or finger interruptions lead to an increase of the microwave detected decay time. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, back‐contacted back‐junction n‐type silicon solar cells featuring a large emitter coverage (point‐like base contacts), a small emitter coverage (point‐like base and emitter contacts), and interdigitated metal fingers have been fabricated and analyzed. For both solar cell designs, a significant reduction of electrical shading losses caused by an increased recombination in the non‐collecting base area on the rear side was obtained. Because the solar cell designs are characterized by an overlap of the B‐doped emitter and the P‐doped base with metal fingers of the other polarity, insulating thin films with excellent electrical insulation properties are required to prevent shunting in these overlapping regions. Thus, with insulating thin films, the geometry of the minority charge carrier collecting emitter diffusion and the geometry of the interdigitated metal fingers can be decoupled. In this regard, plasma‐enhanced chemical vapor deposited SiO2 insulating thin films with various thicknesses and deposited at different temperatures have been investigated in more detail by metal‐insulator‐semiconductor structures. Furthermore, the influence of different metal layers on the insulation properties of the films has been analyzed. It has been found that by applying a SiO2 insulating thin film with a thickness of more than 1000 nm and deposited at 350 °C to solar cells fabricated on 1 Ω cm and 10 Ω cm n‐type float‐zone grown silicon substrates, electrical shading losses could be reduced considerably, resulting in excellent short‐circuit current densities of more than 41 mA/cm2 and conversion efficiencies of up to 23.0%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We apply ultra‐short pulse laser ablation to create local contact openings in thermally grown passivating SiO2 layers. This technique can be used for locally contacting oxide passivated Si solar cells. We use an industrially feasible laser with a pulse duration of τpulse ∼ 10 ps. The specific contact resistance that we reach with evaporated aluminium on a 100 Ω/sq and P‐diffused emitter is in the range of 0·3–1 mΩ cm2. Ultra‐short pulse laser ablation is sufficiently damage free to abandon wet chemical etching after ablation. We measure an emitter saturation current density of J0e = (6·2 ± 1·6) × 10−13 A/cm2 on the laser‐treated areas after a selective emitter diffusion with Rsheet ∼ 20 Ω/sq into the ablated area; a value that is as low as that of reference samples that have the SiO2 layer removed by HF‐etching. Thus, laser ablation of dielectrics with pulse durations of about 10 ps is well suited to fabricate high‐efficiency Si solar cells. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Various measurements and experiments are performed to establish the mechanism of passivation on emitter and base of conventionally manufactured solar cell with p‐type base. The surface coatings on the emitter are removed. The bare surface is then coated with silicon (Si) nanoparticles (NPs) with oxygen termination. It shows an increase in the cell efficiency up to 14% over bare surface of solar cell. The NPs show enhancement in light scattering from the surface, but shows an increase in the recombination lifetime indicating an improved passivation. When back contact is partially removed, the coating on bare back side ( p‐type) of the solar cell also improves the cell efficiency. This is also attributable to the increased recombination lifetime from the measurements. Same NPs are seen to degrade the surface of n and p‐type Si wafers. This apparently contradictory behaviour is explained by studying and comparing the emitter (n‐type) surface of the solar cell with that of n‐type Si wafer and the back surface ( p‐type) with that of p‐type Si wafer. The emitter surface is distinctly different from the n‐type wafer because of the shallow p–n junction causing the surface depletion. Back surface has aluminium (Al) metal trace, which plays an important role in forming complexes with the oxygen‐terminated Si NPs (Si–O NPs). With these studies, it is observed that increase in the efficiency can potentially reduce the thermal budget in solar cell preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The influence of the front metallization on the performance of industrially fabricated c‐Si solar cells is quantified by means of a combination of optical, semiconductor, and circuit modeling. Special attention is given to the front metallization of conventionally processed emitters. First, we verify our model by reproducing the measured I–V curves of industrially fabricated cells. Based on this, the potential changes in performance are predicted by variations in finger spacing, finger resistivity, busbar numbers, and contact resistivity. We also assess the benefits derived from the higher aspect ratios of the fingers: if the fingers are 120 (or 60 µm) wide, increasing the finger height from 15 to 25 µm increases their efficiency by 0.06% (or 0.7%) absolute if a conventional emitter is used. This implies that, if the fingers cannot be made as narrow as 60 µm in industrial mass production, the economic gains from higher aspect ratios may be rather limited, because there is a trade‐off between improved cell efficiency and the increasing cost of silver. Simulations show that, for the light‐induced plating approach, the seed layer must be made as narrow as 50 µm in order to achieve an efficiency gain of 1% absolute with a plating of 10 µm silver. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We have presented thin Al2O3 (~4 nm) with SiNx:H capped (~75 nm) films to effectively passivate the boron‐doped p+ emitter surfaces of the n‐type bifacial c‐Si solar cells with BBr3 diffusion emitter and phosphorus ion‐implanted back surface field. The thin Al2O3 capped with SiNx:H structure not only possesses the excellent field effect and chemical passivation, but also establishes a simple cell structure fully compatible with the existing production lines and processes for the low‐cost n‐type bifacial c‐Si solar cell industrialization. We have successfully achieved the large area (238.95 cm2) high efficiency of 20.89% (front) and 18.45% (rear) n‐type bifacial c‐Si solar cells by optimizing the peak sintering temperature and fine finger double printing technology. We have further shown that the conversion efficiency of the n‐type bifacial c‐Si solar cells can be improved to be over 21.3% by taking a reasonable high emitter sheet resistance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
We present an interdigitated back‐contact silicon heterojunction system designed for liquid‐phase crystallized thin‐film (~10 µm) silicon on glass. The preparation of the interdigitated emitter (a‐Si:H(p)) and absorber (a‐Si:H(n)) contact layers relies on the etch selectivity of doped amorphous silicon layers in alkaline solutions. The etch rates of a‐Si:H(n) and a‐Si:H(p) in 0.6% NaOH were determined and interdigitated back‐contact silicon heterojunction solar cells with two different metallizations, namely Al and ITO/Ag electrodes, were evaluated regarding electrical and optical properties. An additional random pyramid texture on the back side provides short‐circuit current density (jSC) of up to 30.3 mA/cm2 using the ITO/Ag metallization. The maximum efficiency of 10.5% is mainly limited by a low of fill factor of 57%. However, the high jSC, as well as VOC values of 633 mV and pseudo‐fill factors of 77%, underline the high potential of this approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We report results obtained using an innovative approach for the fabrication of bifacial low‐concentrator thin Ag‐free n‐type Cz‐Si (Czochralski silicon) solar cells based on an indium tin oxide/(p+nn+)Cz‐Si/indium fluorine oxide structure. The (p+nn+)Cz‐Si structure was produced by boron and phosphorus diffusion from B‐ and P‐containing glasses deposited on the opposite sides of n‐type Cz‐Si wafers, followed by an etch‐back step. Transparent conducting oxide (TCO) films, acting as antireflection electrodes, were deposited by ultrasonic spray pyrolysis on both sides. A copper wire contact pattern was attached by low‐temperature (160°C) lamination simultaneously to the front and rear transparent conducting oxide layers as well as to the interconnecting ribbons located outside the structure. The shadowing from the contacts was ~4%. The resulting solar cells, 25 × 25 mm2 in dimensions, showed front/rear efficiencies of 17.6–17.9%/16.7–17.0%, respectively, at one to three suns (bifaciality of ~95%). Even at one‐sun front illumination and 20–50% one‐sun rear illumination, such a cell will generate energy approaching that produced by a monofacial solar cell of 21–26% efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
To improve the performance of Si solar cells after firing, it is necessary to control the thickness of the glass layers between the Ag and Si, and the formation of Ag when it recrystallizes into the Si emitter, both of which decisively influence the performance of the cell. In this study, the effect of the physical properties of the frits on the contacts between Ag and Si is verified. Interfaces of Ag electrodes/glass layers/Ag recrystallized into n + emitter are formed when using high-fluidity frits. On the other hand, as the viscous flow of the frits slows as the temperature increases, an interface structure formed of Ag/thin glass/SiN x layers results, with the formation of Ag nanoprecipitates in the glass layers. Our results suggest that the viscous behavior of frits under increasing temperatures leads to the formation of distinct interfaces between Ag electrodes and Si.  相似文献   

13.
Front silicon heterojunction and interdigitated all‐back‐contact silicon heterojunction (IBC‐SHJ) solar cells have the potential for high efficiency and low cost because of their good surface passivation, heterojunction contacts, and low temperature fabrication processes. The performance of both heterojunction device structures depends on the interface between the crystalline silicon (c‐Si) and intrinsic amorphous silicon [(i)a‐Si:H] layer, and the defects in doped a‐Si:H emitter or base contact layers. In this paper, effective minority carrier lifetimes of c‐Si using symmetric passivation structures were measured and analyzed using an extended Shockley–Read–Hall formalism to determine the input interface parameters needed for a successful 2D simulation of fabricated baseline solar cells. Subsequently, the performance of front silicon heterojunction and IBC‐SHJ devices was simulated to determine the influence of defects at the (i)a‐Si:H/c‐Si interface and in the doped a‐Si:H layers. For the baseline device parameters, the difference between the two device configurations is caused by the emitter/base contact gap recombination and the back surface geometry of IBC‐SHJ solar cell. This work provides a guide to the optimization of both types of SHJ device performance, predicting an IBC‐SHJ solar cell efficiency of 25% for realistic material parameters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In the following, high‐efficiency back‐contact back‐junction silicon solar cells with aluminum‐alloyed emitter are described. First, the theoretical background for the cell concept is explained. To that purpose, the bulk lifetime and the front surface field characteristics are considered. Three different process sequences for the phosphorus‐diffused profiles on the front and back surfaces are depicted: One exhibits a shallow field, and two sequences have deeper, driven‐in profiles. For realizing high efficiencies, such cell structures must meet several prerequisites, such as firing‐stable front and rear passivations, and functional small screen‐printed Al structures. Furthermore, it must be possible to create contacts on the Si surfaces using the driven‐in P‐profiles. With such a structure, cell efficiencies of 20.0% are reached. An analysis of the series resistance and area‐weighted recombination is performed. The results are compared with the measured cell parameters. Two‐dimensional simulations show the efficiency potential when decreasing the width of the backside field and when a cell structure, which would inhibit a passivated aluminum‐alloyed p+‐emitter, is created. Also, an advanced concept is demonstrated where a point array of both polarities on the cell backside is interconnected externally on module level. To that purpose, the cell is soldered to a printed wiring circuit board by using a reflow soldering process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Spectral response of solar cells determines the output performance of the devices. In this work, a 20.0% efficient silicon (Si) nano/microstructures (N/M‐Strus) based solar cell with a standard solar wafer size of 156 × 156 mm2 (pseudo‐square) has been successfully fabricated, by employing the simultaneous stack SiO2/SiNx passivation for the front N/M‐Strus based n+‐emitter and the rear surface. The key to success lies in the excellent broadband spectral responses combining the improved short‐wavelength response of the stack SiO2/SiNx passivated Si N/M‐Strus based n+‐emitter with the extraordinary long‐wavelength response of the stack SiO2/SiNx passivated rear reflector. Benefiting from the broadband spectral response, the highest open‐circuit voltage (Voc) and short‐circuit current density (Jsc) reach up to 0.653 V and 39.0 mA cm?2, respectively. This high‐performance screen‐printed Si N/M‐Strus based solar cell has shown a very promising way to the commercial mass production of the Si based high‐efficient solar cells.  相似文献   

16.
High‐efficiency 4 cm2 screen‐printed (SP) textured cells were fabricated on 100 Ω/sq emitters using a rapid single‐step belt furnace firing process. The high contact quality resulted in a low series resistance of 0·79 Ωcm2, high shunt resistance of 48 836 Ωcm2, a low junction leakage current of 18·5 nA/cm2 (n2 = 2) yielding a high fill factor (FF) of 0·784 on 100 Ω/sq emitter. A low resistivity (0·6 Ωcm) FZ Si was used for the base to enhance the contribution of the high sheet‐resistance emitter without appreciably sacrificing the bulk lifetime. This resulted in a 19% efficient (confirmed at NREL) SP 4 cm2 cell on textured FZ silicon with SP contacts and single‐layer antireflection coating. This is apparently higher in performance than any other previously reported cell using standard screen‐printing approaches (i.e., single‐step firing and grid metallization). Detailed cell characterization and device modeling were performed to extract all the important device parameters of this 19% SP Si cell and provide guidelines for achieving 20% SP Si cells. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we evaluate p‐type passivated emitter and rear locally diffused (p‐PERL) and n‐type passivated emitter and rear totally diffused (n‐PERT) large area silicon solar cells featuring nickel/copper/silver (Ni/Cu/Ag) plated front side contacts. By using front emitter p‐PERL and rear emitter n‐PERT, both cell structures can be produced with only a few adaptations in the entire process sequence because both feature the same front side design: homogeneous n+ diffused region with low surface concentration, SiO2/SiNx:H passivation, Ni/Cu/Ag plated contacts. Energy conversion efficiencies up to 20.5% (externally confirmed at FhG‐ISE Callab) are presented for both cell structures on large area cells together with power‐loss analysis and potential efficiency improvements based on PC1D simulations. We demonstrate that the use of a rear emitter n‐PERT cell design with Ni/Cu/Ag plated front side contacts enables to reach open‐circuit voltage values up to 676 mV on 1–2 Ω cm n‐type CZ Si. We show that rear emitter n‐PERT cells present the potential for energy conversion efficiencies above 21.5% together with a strong tolerance to wafer thickness and bulk resistivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
We have developed a crystalline silicon solar cell with amorphous silicon (a‐Si:H) rear‐surface passivation based on a simple process. The a‐Si:H layer is deposited at 225°C by plasma‐enhanced chemical vapor deposition. An aluminum grid is evaporated onto the a‐Si:H‐passivated rear. The base contacts are formed by COSIMA (contact formation to a‐Si:H passivated wafers by means of annealing) when subsequently depositing the front silicon nitride layer at 325°C. The a‐Si:H underneath the aluminum fingers dissolves completely within the aluminum and an ohmic contact to the base is formed. This contacting scheme results in a very low contact resistance of 3.5 ±0.2 mΩ cm2 on low‐resistivity (0.5 Ω cm) p‐type silicon, which is below that obtained for conventional Al/Si contacts. We achieve an independently confirmed energy conversion efficiency of 20.1% under one‐sun standard testing conditions for a 4 cm2 large cell. Measurements of the internal quantum efficiency show an improved rear surface passivation compared with reference cells with a silicon nitride rear passivation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
We recently introduced the buried emitter back‐junction solar cell, featuring large area fractions of overlap between n+‐type and p+‐type regions at the rear side of the device. In this paper we analyse the performance of the buried emitter solar cell (BESC) and its generalisations by one‐dimensional device simulations and analytical model calculations. A key finding is that the generalised versions of the BESC structure allows achieving very high efficiencies by passivating virtually the entire surface of p‐type emitters by an oxidised n‐type surface layer. A disadvantage of this type of full‐area emitter passivation in the generalised back‐junction BESC is the need for an insulating layer between the metallisation of the emitter and the contact to the base, which is technologically difficult to achieve. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号