首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper examines the effect on the structural response of the inevitable correlation which exists between the six earthquake components acting along a set of structural axes. The rotational components are expressed in terms of the spatial derivatives of the translational components. For the calculation of response, modal analysis is employed so that ground response spectra can also be used as seismic input. A methodology is developed to obtain the maximum mean square response which can occur in a structure, irrespective of its orientation with respect to the impinging seismic waves. The application of this methodology for the calculation of design response is advocated, especially for asymmetric structures. For the assumed model of seismic wave motion, the numerical results show a significant contribution to the response from the rotational components. This contribution is, however, expected to be reduced by structural foundation averaging and interaction effects. Further studies with more complete models of seismic wave motions, and their interaction with structural foundations, are thus warranted for a realistic evaluation and characterization of the rotational inputs for design purposes.  相似文献   

2.
To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.  相似文献   

3.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the seismic response of multi‐storey cross‐laminated timber (CLT) buildings and its relationship with salient ground‐motion and building characteristics. Attention is given to the effects of earthquake frequency content on the inelastic deformation demands of platform CLT walled structures. The response of a set of 60 CLT buildings of varying number of storeys and panel fragmentation levels representative of a wide range of structural configurations subjected to 1656 real earthquake records is examined. It is shown that, besides salient structural parameters like panel aspect ratio, design behaviour factor, and density of joints, the frequency content of the earthquake action as characterized by its mean period has a paramount importance on the level of nonlinear deformations attained by CLT structures. Moreover, the evolution of drifts as a function of building to ground‐motion periods ratio is different for low‐ and high‐rise buildings. Accordingly, nonlinear regression models are developed for estimating the global and interstorey drifts demands on multi‐storey CLT buildings. Finally, the significance of the results is highlighted with reference to European seismic design procedures and recent assessment proposals.  相似文献   

5.
为探讨村镇建筑低层砌体结构在大震下的动力响应及损伤分布情况,基于农居结构性能实地调查与检测,在有限元软件ABAQUS中建立了不同抗震构造措施的砌体结构有限元模型,并进行结构动力特性及大震下弹塑性时程的分析,对比它们的自振特性参数、位移响应参数及损伤破坏形态。分析表明,低层砌体结构合理设置构造柱后结构自振周期略有减小,但振型不变;在弹性变形阶段构造柱能有效约束结构的动力位移响应,进入塑性变形后构造柱可提高砌体结构的耗能能力,但值得注意的是,结构刚度退化后构造柱会加剧纵横向抗侧刚度的不均衡性;低层砌体结构合理设置圈梁构造柱可有效抑制承重横墙的裂缝发展及楼屋盖发生支座失效破坏,且可以明显削弱结构的扭转效应。  相似文献   

6.
Post-earthquake damages investigation in past and recent earthquakes has illustrated that the building structures are vulnerable to severe damage and/or collapse during moderate to strong ground motion. Among the possible structural damages, seismic induced pounding has been commonly observed in several earthquakes. A parametric study on buildings pounding response as well as proper seismic hazard mitigation practice for adjacent buildings is carried out. Three categories of recorded earthquake excitation are used for input excitations. The effect of impact is studied using linear and nonlinear contact force model for different separation distances and compared with nominal model without pounding consideration. The severity of the impact depends on the dynamic characteristics of the adjacent buildings in combination with the earthquake characteristics. Pounding produces acceleration and shear forces/stresses at various story levels that are greater than those obtained from the no pounding case, while the peak drift depends on the input excitation characteristics. Also, increasing gap width is likely to be effective when the separation is sufficiently wide to eliminate contact. Furthermore, it is effective to provide a shock absorber device system for the mitigation of impact effects between adjacent buildings with relatively narrow seismic gaps, where the sudden changes of stiffness during poundings can be smoothed. This prevents, to some extent, the acceleration peaks due to impact. The pounding forces exerted on the adjacent buildings can be satisfactorily reduced.  相似文献   

7.
为准确全面地量化分析研究土木工程建筑中混凝土结构抗震稳定性,提出基于滞回曲线以及结构动力方程的混凝土结构抗震稳定性分析方法。首先采用滞回曲线描述混凝土结构在地震作用下的损伤情况,对滞回曲线模型拐点进行有效操作,确保动力方程对混凝土结构抗震稳定性进行有效分析。其次采用基于混凝土结构动力方程的抗震稳定性分析方法,对地震地面运动模型以及结构分析模型来分析混凝土结构的随机地震反应情况,得到混凝土结构随机反应的汇总量,在此基础上通过双参数的结构破坏模型,基于结构稳定性原理,获取运算混凝土结构抗震稳定性的概率表达式,再基于该表达式分析混凝土结构的抗震稳定性情况。实验结果说明,所提方法能够对土木工程建筑中不同类型混凝土构件抗震稳定性进行有效分析,分析结果准确且全面。  相似文献   

8.
Reinforced concrete (RC) shear walls have been extensively used as lateral load resisting structural members in tall buildings. However, in the past, strong earthquake events RC structural walls in some buildings suffered severe damage, which concentrated at the bottom and was very difficult to be repaired. The installation of the replaceable corner components (RCCs) at the bottom of the structural wall is a new method to form an earthquake resilient structural wall whose function can be quickly restored by replacing the RCCs after the strong earthquake because of the damage concentrating on RCCs. In this study, a new kind of replaceable energy‐dissipation component installed at the bottom corner of RC structural walls was proposed. To study the seismic performance of the new structural wall with RCCs, the cyclic loading tests on three new structural wall specimens and one conventional RC structural wall specimen were conducted. One of the new structural wall specimens experienced replacement and reloading process to verify the feasibility of replacement. The results show that the structural behavior of all specimens was flexure dominating. The damage in the new shear specimens mainly concentrated on RCCs. The replacement of RCCs can be implemented conveniently after the residual deformation occurred in the structure. Compared with the conventional structural wall specimen, the seismic performance of new structural wall specimens was improved significantly. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
双向偏心结构扭转耦联地震反应的序列最优控制   总被引:1,自引:0,他引:1  
本文分析了不对称建筑结构平移-扭转耦联振动的动力特性及地震作用下的响应;根据地震动输入结构的过程,推导出一种更为一般的最优控制算法,所获得的控制力表达式同时包括地震响应和地震激励。通过对一非规则四层框架结构的扭转耦联地震反应控制分析表明,该算法不仅能有效地控制结构的平移地震反应,而且更有效地抑制结构的扭转耦联地震反应。  相似文献   

10.
The energy dissipation capacity of a structure is a very important index that indicates the structural performance in energy‐based seismic design. This index depends greatly on the structural components that form the whole system. Owing to the wide use of the strong‐column weak‐beam strength hierarchy where steel beams dissipate the majority of earthquake input energy to the structures, it is necessary to evaluate the energy dissipation capacity of the beams. Under cyclic loadings such as seismic effects, the damage of the beams accumulates. Therefore, loading history is known to be the most pivotal factor influencing the deformation capacity and energy dissipation capacity of the beams. Seismic loadings with significantly different characteristics are applied to structural beams during different types of earthquakes and there is no unique appropriate loading protocol that can represent all types of seismic loadings. This paper focuses on the effects of various loading histories on the deformation capacity and energy dissipation capacity of the beams. Cyclic loading tests of steel beams were performed. In addition, some experimental results from published tests were also collected to form a database. This database was used to evaluate the energy dissipation capacity of steel beams suffering from ductile fracture under various loading histories. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
As high‐rise buildings are built taller and more slender, their dynamic behavior becomes an increasingly critical design consideration. Wind‐induced vibrations cause an increase in the lateral wind design loads, but more importantly, they can be perceived by building occupants, creating levels of discomfort ranging from minor annoyance to severe motion sickness. The current techniques to address wind vibration perception include stiffening the lateral load‐resisting system, adding mass to the building, reducing the number of stories, or incorporating a vibration absorber at the top of the building; each solution has significant economic consequences for builders. Significant distributed damage is also expected in tall buildings under severe seismic loading, as a result of the ductile seismic design philosophy that is widely used for such structures. In this paper, the viscoelastic coupling damper (VCD) that was developed at the University of Toronto to increase the level of inherent damping of tall coupled shear wall buildings to control wind‐induced and earthquake‐induced dynamic vibrations is introduced. Damping is provided by incorporating VCDs in lieu of coupling beams in common structural configurations and therefore does not occupy any valuable architectural space, while mitigating building tenant vibration perception problems and reducing both the wind and earthquake responses of the structure. This paper provides an overview of this newly proposed system, its development, and its performance benefits as well as the overall seismic and wind design philosophy that it encompasses. Two tall building case studies incorporating VCDs are presented to demonstrate how the system results in more efficient designs. In the examples that are presented, the focus is on the wind and moderate earthquake responses that often govern the design of such tall slender structures while reference is made to other studies where the response of the system under severe seismic loading conditions is examined in more detail and where results from tests conducted on the viscoelastic material and the VCDs in full‐scale are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
While much effort has been spent on analysis of individual structures, building class seismic damage estimators, of value in disaster planning, code-writing, city planning, national hazards policy formulation, etc., have been little investigated. Based largely on data from Sendai City, Japan in the 12 June, 1978 Miyagiken-oki earthquake (ML = 7.4), estimators of seismic damage for low- and mid-rise buildings in urban Japan have been determined. For low-rise buildings, based on damage to over 60,000 buildings, damage ratios for onset of damage and collapse and for cost of damage are found to correlate best with response spectra at 0.75 s. Using published test data and average building properties, a seismic damage model explains the low-rise building behaviour and permits examination of the effect of structural changes on the estimated damage. For mid-rise buildings, damage states (0: none, 4: total) are determined as a function of maximum storey displacement, based on published natural period determinations (pre- and post-earthquake) for 189 mid-rise buildings in Sendai. The effects of structural changes on expected damage can also be estimated. With these two building class damage estimators, a large part of future seismic damage to urban Japan can be estimated, as well as the effects of various mitigation measures.  相似文献   

13.
By now, it is well known that long‐period surface waves can induce resonant response in high‐rise buildings, in particular those located in sedimentary basins. Rayleigh wave passage has been reported to induce rocking motion at the base of the buildings which can increase displacement demands significantly. However, the building behavior to base rocking has not been extensively studied because commercially available instruments do not record rotational components of ground motion, and thus, rocking time histories have not been available to the analysts. In a recent study, we proposed an effective method for estimating the rocking associated with Rayleigh waves, which takes into account their frequency‐dependent phase velocities. In the present work, we select a number of recorded seismic motions which include surface waves on sedimentary basins from recent well‐recorded earthquake events. Then, we proceed to identify and extract the recorded surface waves by using the technique mentioned above. Using realistic soil‐structure analytical models that have been proposed in the published literature for high‐rise buildings, we study their response to Rayleigh waves as they respond to both translational and rocking motions. Of particular interest is to compare the response of such structures with and without the presence of rotational motions due to surface waves. Using the roof displacement and the building interstory drift as response quantities, our results indicate that demands are controlled by rotational (rocking) motions associated with Rayleigh waves.  相似文献   

14.
In the present study the combined influence of seismic orientation and a number of parameters characterizing the structural system of Reinforced Concrete (R/C) buildings on the level of expected damages are examined. For the purposes of the above investigation eight medium‐rise buildings are designed on the basis of the current seismic codes. The structural characteristics examined are the ratio of the base shear received by the structural walls, the ratio of horizontal stiffness in two orthogonal directions and the structural eccentricity. Then, the buildings are analyzed by nonlinear time response analysis using 100 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes, forming 72 different angles with the structural axes. The structural damage is expressed in terms of the Park and Ang damage index. The results of the analyses revealed that the damage level of the buildings is strongly affected by the incident angle of the ground motion. The extent at which the orientation of the seismic records influences the damage response depends on the structural system and the distance of the record to the fault rupture. As a consequence, the common practice of applying the earthquake records along the structural axes can lead to significant underestimation of structural damage. Also, it was shown that the structural eccentricity can significantly differentiate the seismic damage level, as well as the impact of the earthquake orientation on the structural damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
2021年5月21日云南漾濞发生6.4级地震,成为继2014年6.5级鲁甸地震和6.6级景谷地震之后云南省内时隔7年的又一次震级大于6级的破坏性地震。漾濞地震虽然与鲁甸地震在震级、震源深度和震源机制等方面均较相似,但漾濞地震震中附近的地面运动强度远不及鲁甸地震,且漾濞县的抗震设防烈度远高于鲁甸;相应地,漾濞地震对抗震设防建筑造成的破坏也远轻于后者。本文首先通过比较这三次地震震中附近的强震记录的反应谱,并结合公共建筑的震后应急评估结果,说明漾濞地震和鲁甸地震中公共建筑破坏程度的显著差异。进而以位于漾濞县城的两栋钢筋混凝土公共建筑为例,介绍此次地震中砌体填充墙和吊顶等典型非结构构件的震害。  相似文献   

16.
The elastic properties of buildings change during earthquakes. In particular, fundamental frequencies are observed to shift rapidly during the co-seismic phase and to recover slowly once the strong motion has finished. Although the frequency shift is usually correlated with loading amplitude, the co-seismic frequency variations observed in real structures are not only determined by the absolute amplitude of the strain value. In order to interpret the uncertainties of the prediction of engineering demand parameters for a given intensity measure, we analyze the influence of loading rates (i.e., strain rates) on resonance frequency variations in buildings with different structural states during the loading and unloading phases caused by seismic events. Our observations suggest the existence of a strain rate threshold that activates the nonlinear response of the structure, characterizing the activation of cracking and indicating a strong nexus between the elastic structural response, structural state, and the loading process.  相似文献   

17.
本文主要研究如何通过合理设计来提高高层钢结构的整体抗震能力。首先,给出了高层钢结构的非线性计算模型;其次,建立了高层钢结构在强地震动作用下的倒塌失效模式的极限状态判别准则;然后,通过模态pushover分析,研究了高层钢结构在水平地震作用下的损伤规律;最后,重点研究了高层钢结构的整体抗震能力的提高方法,提出了均匀损伤的设计方法,该方法通过消除结构的薄弱层,来达到提高高层钢结构的整体抗震能力的目的。通过对两栋20层的高层钢框架结构进行极限时程分析和极限pushover分析,验证了文中提出的均匀损伤的设计方法的可行性。本文的工作可为高层钢结构的抗地震倒塌设计提供参考依据。  相似文献   

18.
SMART-1台阵记录的长周期反应谱特性   总被引:3,自引:0,他引:3  
利用台湾SMART-1台阵的数字强震仪加速度记录分析了同类场地上的地震动长周期分量特性,结果表明:同一次地震震中距基本相同的同类场地加速度反应谱短周期部分有较明显的差别,长周期部分则基本相同;震级和震中距对短周期反应谱影响明显,对长周期反应谱也有一定影响。最后将SMART-1台阳场地的平均谱与新的建筑抗震设计规范修订稿中提出的设计反应谱作了比较。  相似文献   

19.
石雄 《华南地震》2019,39(2):142-146
为了提高铁路房屋的抗震能力,分析地震动竖向分量对铁路房屋的地震响应性能,提出基于荷载—变形关系联合评估的地震动竖向分量对铁路房屋的地震响应评估模型。构建地震动竖向分量的力学响应评估模型,识别铁路房屋的地震屈服响应参数,采用荷载—变形关系和极限荷载结合的方法进行铁路房屋的地震屈服响应应力评估,分析地震动竖向分量对铁路房屋的响应。建立动量平衡方程和弯矩平衡方程,构建铁路房屋的地震响应的三阶段荷载—变形模式,实现地震动竖向分量对铁路房屋的地震响应性能评估模型的优化设计。测试结果表明,采用该模型能有效分析地震动竖向分量对铁路房屋的地震响应性能影响,Simulink仿真结果和有限元模拟结果的准确性较高,力学参数辨识性能优越,计算结果准确可靠。  相似文献   

20.
简要介绍地震安全社区的实现途径以及防屈曲支撑的构成和性能参数。运用ABAQUS软件对有无安装防屈曲支撑的钢筋混凝土框架模型进行动力时程分析,总结分析防屈曲支撑对钢筋混凝土框架结构的减震效果。结果表明,防屈曲支撑能大大降低钢筋混凝土框架结构在罕遇地震作用下的层间位移角,提高建筑物抗震性能,使地震安全社区中抗震设防烈度为Ⅶ度的建筑物能够抵御Ⅷ度罕遇地震。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号