首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates SnO2:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8?nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a TiO2 stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, TiO2 films revealed insignificant changes in the optical spectra. The initial sheet resistance of the SnO2:F layer was 14?Ω/sq. The deposition of the top TiO2 layer (45?nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2?Ω/sq. In addition, the sheet resistance of the double-layer FTO/TiO2 transparent conductive oxide (TCO) electrode increased by 1?Ω/sq as a result of H+ plasma exposure. Regardless of the TiO2 film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15?nm thick) due to their high transparency, offering high resistance to aggressive H+ plasma conditions. In this paper we show that ~50-nm-thick TiO2 coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure.  相似文献   

2.
Combinatorial atmospheric pressure chemical vapor deposition (APCVD) is used to deposit anatase TiO2 with a graded level of F‐doping between 1.10 ≤ F:Ti (at%) ≤ 2.57 from the reaction of titanium tetrachloride, ethyl acetate and trifluoroacetic acid at 500 °C on glass. The photocatalytic activity and electrical resistivity of 200 allotted positions across a grid are screened using high‐throughput techniques. A blue region of film is singled out for containing the lowest electrical resistivities of any previously reported doped or undoped TiO2‐based system formed by APCVD (ρ ≈ 0.22–0.45 Ω cm, n = 0.8–1.2 × 1018 cm?3, μ = 18–33 cm2 V?1 s?1). The blue region contains a lower fluorine doping level (F:Ti ≈ 1.1–1.6%, Ebg ≈ 3.06 eV) than its neighboring colorless region (F:Ti ≈ 2.3–2.6%, Ebg ≈ 3.15–3.21 eV, ρ ≈ 0.61–1.3 Ω cm). State‐of‐the‐art hybrid density functional theory calculations were employed to elucidate the nature of the different doping behaviors. Two distinct fluorine doping environments were present. At low concentrations, F substituting for O (FO) dominates, forming blue F:TiO2. At high concentrations, negatively charged fluorine interstitials (Fi?1) begin to dominate, forming transparent F:TiO2.  相似文献   

3.
Mesoporous materials have pores with diameters between 2 nm and 50 nm, the presence of which generally decreases the thermal conductivity of the material. By incorporating mesoporous structures into thermoelectric materials, the thermoelectric properties of these materials can be improved. Although TiO2 is an ordinary insulator, reduced TiO2 shows better electrical conductivity and is therefore a potential thermoelectric material. Furthermore, the addition of a dopant to TiO2 can improve its electrical conductivity. We hypothesized that, by doping ordered mesoporous TiO2 films with niobium, we would be able to minimize the thermal conductivity and maximize the electrical conductivity. To investigate the effects of Nb doping and a mesoporous structure on the thermoelectric characteristics of TiO2 films, Nb-doped mesoporous films were investigated using x-ray diffraction, ellipsometry, four-point probe measurements, and thermal conductivity analysis. We found that Nb doping of ordered mesoporous TiO2 films improved their thermoelectric properties.  相似文献   

4.
Well‐crystallized Nb‐doped anatase TiO2 nanoparticles are prepared by a novel synthetic route and successfully used as the photoanode of dye‐sensitized solar cells (DSSCs). The homogenous distribution of Nb in the TiO2 lattice is confirmed by scanning transmission electron microscopy (STEM) elemental mapping and line‐scanning analyses. After Nb doping, the conductivity of the TiO2 powder increases, and its flat‐band potential (Vfb) has a positive shift. The energy‐conversion efficiency of a cell based on 5.0 mol% Nb‐doped TiO2 is significantly better, by about 18.2%, compared to that of a cell based on undoped TiO2. The as‐prepared Nb‐doped TiO2 material is proven in detail to be a better photoanode material than pure TiO2, and this new synthetic approach using a water‐soluble precursor provides a simple and versatile way to prepare excellent photoanode materials.  相似文献   

5.
Dark‐colored rutile TiO2 nanorods doped by electroconducting Ti3+ have been obtained uniformly with an average diameter of ≈7 nm, and have been first utilized as anodes in lithium‐ion batteries. They deliver a high reversible specific capacity of 185.7 mAh g?1 at 0.2 C (33.6 mA g?1) and maintain 92.1 mAh g?1 after 1000 cycles at an extremely high rate 50 C with an outstanding retention of 98.4%. Notably, the coulombic efficiency of Ti3+–TiO2 has been improved by approximately 10% compared with that of pristine rutile TiO2, which can be mainly attributed to its prompt electron transfer because of the introduction of Ti3+. Again the synergetic merits are noticed when the promoted electronic conductivity is combined with a shortened Li+ diffusion length resulting from the ultrafine nanorod structure, giving rise to the remarkable rate capabilities and extraordinary cycling stabilities for applications in fast and durable charge/discharge batteries. It is of great significance to incorporate Ti3+ into rutile TiO2 to exhibit particular electrochemical characteristics triggering an effective way to improve the energy storage properties.  相似文献   

6.
The authors report a method of enhancing the conductivity of TiO2 films by controlling their structural phases. Thin films of Nb:TiO2 (TNO) were prepared on glass and silicon substrates by RF sputtering with varying Nb content at 200 °C. It is shown that fine control over the structural phases of TiO2 is critical for achieving low resistivity. The resistivity values of the films doped with oxygen vacancies and Nb+5 decreased from 3.8 × 10−1 to 4.1 × 10−3 Ω cm when the weight percent of rutile in anatase-rutile phase mixture decreases from 52.8% to 32%. Furthermore, the lowest resistivity value of 2.37 × 10−3 Ω cm was obtained for the doped TiO2 films having single phase anatase structure. The physical processes responsible for the diverse electrical properties are discussed and are associated with the growth conditions. Our result indicates that highly conductive doped-TiO2 film can be obtained by controlling the anatase phase formation via the growth temperature. The obtained results can significantly contribute to the development of transparent electrodes by RF sputtering, a suitable technique for coating large area substrates.  相似文献   

7.
2D titanium carbide (Ti3C2Tx) MXene films, with their well-defined microstructures and chemical functionality, provide a macroscale use of nano-sized Ti3C2Tx flakes. Ti3C2Tx films have attractive physicochemical properties favorable for device design, such as high electrical conductivity (up to 20 000 S cm–1), impressive volumetric capacitance (1500 F cm–3), strong in-plane mechanical strength (up to 570 MPa), and a high degree of flexibility. Here, the appealing features of Ti3C2Tx-based films enabled by the layer-to-layer arrangement of nanosheets are reviewed. We devote attention to the key strategies for actualizing desirable characteristics in Ti3C2Tx-based functional films, such as high and tunable electrical conductivity, outstanding mechanical properties, enhanced oxidation-resistance and shelf life, hydrophilicity/hydrophobicity, adjustable porosity, and convenient processability. This review further discusses fundamental aspects and advances in the applications of Ti3C2Tx-based films with a focus on illuminating the relationship between the structural features and the resulting performances for target applications. Finally, the challenges and opportunities in terms of future research, development, and applications of Ti3C2Tx-based films are suggested. A comprehensive understanding of these competitive features and challenges shall provide guidelines and inspiration for the further development of Ti3C2Tx-based functional films, and contribute to the advances in MXene technology.  相似文献   

8.
The structure and electrical and optical properties of heterostructures formed on the surface of single-crystal silicon wafers as a result of the heat treatment and pulsed photon treatment of Ti films in oxygen, air, and nitrogen are investigated. It is shown that a TiO2/Ti5Si3/p-Si heterostructure is formed upon heat treatment in air, whereas a TiO2/TiSi2/p-Si heterostructure is formed upon photon treatment. It is established that rutile films with pronounced n-type conductivity are formed as a result of the heat treatment of Ni-doped Ti films in oxygen. Rutile films with p-type conductivity are formed upon the thermal annealing of Ti films in air with subsequent photon treatment in nitrogen.  相似文献   

9.
Cadmium oxide (CdO) is a transparent conducting oxide (TCO) with versatile applications, many of which are linked to its transparency in the Vis/NIR spectral range in addition to its unique electrical conductivity. Its optoelectronic properties can be controlled in order to bring them into a desired choice by doping method. Usually resistivity of TCO could be reduced by increasing Nel, which, in turns, reduces the transparency (especially in the NIR region) of TCO. Therefore, it is important to seek ways to reduce ρ by increasing of μel (rather than Nel) that also reduces the absorption.In the present work, CdO thin films doped with different amounts of vanadium (V) ions were deposited on glass and silicon wafer substrates by physical vapour deposition method. The films were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), optical absorption spectroscopy, and dc-electrical measurements. The obtained results show significant improvements in the conductivity (σ), mobility (μ), and carrier concentration (Nel) of host CdO. The measured utmost enhancement in conductivity by 420%, mobility by 766%, and carrier concentration by 201% for CdO films doped with 4–5 wt% V. This suggests the possibility of using V-doped CdO films in different TCO applications.  相似文献   

10.
The synthesis of semiconducting TiO2 thin films deposited by reactive sputtering is discussed. In particular, defect doping of the anatase polymorph that is epitaxial stabilized on (0 0 1) LaAlO3 was explored using either oxygen or water vapor as the oxidizing species. For films grown in oxygen, a transition from insulating to metallic conductivity of the films is observed as the O2 pressure is reduced. X-ray diffraction measurements show the presence of the TinO2n−1 phase when the oxygen pressure is reduced sufficiently to induce conductive behavior. Hall measurements indicate that these materials are p-type. In contrast, the use of water vapor as the oxidizing species enabled the formation of n-type semiconducting TiO2 with carrier density on the order of 1018 cm−3 and mobility of 10–15 cm2/V s.  相似文献   

11.
Parasitic absorption in transparent electrodes is one of the main roadblocks to enabling power conversion efficiencies (PCEs) for perovskite‐based tandem solar cells beyond 30%. To reduce such losses and maximize light coupling, the broadband transparency of such electrodes should be improved, especially at the front of the device. Here, the excellent properties of Zr‐doped indium oxide (IZRO) transparent electrodes for such applications, with improved near‐infrared (NIR) response, compared to conventional tin‐doped indium oxide (ITO) electrodes, are shown. Optimized IZRO films feature a very high electron mobility (up to ≈77 cm2 V?1 s?1), enabling highly infrared transparent films with a very low sheet resistance (≈18 Ω □?1 for annealed 100 nm films). For devices, this translates in a parasitic absorption of only ≈5% for IZRO within the solar spectrum (250–2500 nm range), to be compared with ≈10% for commercial ITO. Fundamentally, it is found that the high conductivity of annealed IZRO films is directly linked to promoted crystallinity of the indium oxide (In2O3) films due to Zr‐doping. Overall, on a four‐terminal perovskite/silicon tandem device level, an absolute 3.5 mA cm?2 short‐circuit current improvement in silicon bottom cells is obtained by replacing commercial ITO electrodes with IZRO, resulting in improving the PCE from 23.3% to 26.2%.  相似文献   

12.
2D titanium carbide (Ti3C2Tx MXene) has potential application in flexible/transparent conductors because of its metallic conductivity and solution processability. However, solution‐processed Ti3C2Tx films suffer from poor hydration stability and mechanical performance that stem from the presence of intercalants, which are unavoidably introduced during the preparation of Ti3C2Tx suspension. A proton acid colloidal processing approach is developed to remove the extrinsic intercalants in Ti3C2Tx film materials, producing pristine Ti3C2Tx films with significantly enhanced conductivity, mechanical strength, and environmental stability. Typically, pristine Ti3C2Tx films show more than twofold higher conductivity (10 400 S cm?1 vs 4620 S cm?1) and up to 11‐ and 32‐times higher strength and strain energy at failure (112 MPa, 1,480 kJ m?3, vs 10 MPa, 45 kJ m?3) than films prepared without proton acid processing. Simultaneously, the conductivity and mechanical integrity of pristine films are also largely retained during the long‐term storage in H2O/O2 environment. The improvement in mechanical performance and conductivity is originated from the intrinsic strong interaction between Ti3C2Tx layers, and the absence of extrinsic intercalants makes pristine Ti3C2Tx films stable in humidity by blocking the intercalation of H2O/O2. This method makes the material more competitive for real‐world applications such as electromagnetic interference shielding.  相似文献   

13.
Nd/Nb-co-substituted Bi3.15Nd0.85Ti3?x Nb x O12 (BNTN x , x = 0.01, 0.03, 0.05 and 0.07) thin films were grown on Pt/Ti/SiO2/Si (100) substrates by chemical solution deposition. The effects of Nb content on the micro-structural, dielectric, ferroelectric, leakage current and capacitive properties of the BNTN x thin films were investigated. A low-concentration substitution with Nb ions in BNTN x can greatly enhance its remanent polarization (2P r) and reduce the coercive field (2E c) compared with those of Bi4Ti3O12 (BIT) thin film. The highest 2P r (71.4 μC/cm2) was observed in the BNTN0.03 thin film when the 2E c was 202 kV/cm. Leakage currents of all the films were on the order of 10?6 to 10?5 A/cm2, and the BNTN0.03 thin film has a minimum leakage current (2.1 × 10?6 A/cm2) under the high electric field (267 kV/cm). Besides, the CV curve of the BNTN0.03 thin film is the most symmetrical, and the maximum tunability (21.0%) was also observed in this film. The BNTN0.03 thin film shows the largest dielectric constant and the lowest dielectric loss and its maximum Curie temperature is 410 ± 5°C.  相似文献   

14.
Wire‐shaped electrodes for solid‐state cable‐type supercapacitors (SSCTS) with high device capacitance and ultrahigh rate capability are prepared by depositing poly(3,4‐ethylenedioxythiophene) onto self‐doped TiO2 nanotubes (D‐TiO2) aligned on Ti wire via a well‐controlled electrochemical process. The large surface area, short ion diffusion path, and high electrical conductivity of these rationally engineered electrodes all contribute to the energy storage performance of SSCTS. The cyclic voltammetric studies show the good energy storage ability of the SSCTS even at an ultrahigh scan rate of 1000 V s?1, which reveals the excellent instantaneous power characteristics of the device. The capacitance of 1.1 V SSCTS obtained from the charge–discharge measurements is 208.36 µF cm?1 at a discharge current of 100 µA cm?1 and 152.36 µF cm?1 at a discharge current of 2000 µA cm?1, respectively, indicating the ultrahigh rate capability. Furthermore, the SSCTS shows superior cyclic stability during long‐term (20 000 cycles) cycling, and also maintains excellent performance when it is subjected to bending and succeeding straightening process.  相似文献   

15.
A barrier layer of undoped TiO2 was deposited on the Nb‐doped TiO2 electrode to suppress the recombination at the Nb‐doped TiO2/dye–electrolyte interface for highly efficient dye‐sensitized solar cells (DSCs). The Nb content in TiO2 was varied in a range of 0.7–3.5 mol% to modify the TiO2 energy‐band structure. Nb‐doped TiO2/dye interfaces were characterized by a combination of ultraviolet photoemission spectroscopy and optical absorption spectroscopy measurements, allowing the determination of the conduction band minimum (CBM) of the TiO2 electrode and the lowest unoccupied molecular orbital of the N719 dye. The lowering of TiO2 CBM by Nb doping induced the increase in short‐circuit current of DSCs. However, open‐circuit voltage and fill factor are decreased, and this result was ascribed to the enhanced recombination at the Nb‐doped TiO2/dye–electrolyte interface. The effect of doping on charge transport in DSCs was analyzed using electrochemical impedance spectroscopy. We have shown that by introducing of TiO2 barrier layer, the Nb doping content, which results in DSC highest efficiency, can be increased because of the suppression of the dopant‐induced recombination. The energy conversion efficiency of the solar cells increased from 7.8% to 9.0% when undoped TiO2 electrode is replaced with electrode doped with 2.7 mol% of Nb because of the improvement of the electron injection and collection efficiencies. The correlation between the electronic structure of the TiO2 electrode, charge transfer characteristics, and photovoltaic parameters of DSCs is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Polyaniline (PANI)/TiO2 nanocomposite samples with various dopant percentages of TiO2 were synthesized at room temperature using a chemical oxidative method. The samples were characterized by ultraviolet-visible spectrometer, Fourier transform infrared (FTIR) spectrometer, X-ray diffraction (XRD), scanning electron microscopy (SEM), EDAX and conductivity measurements. Incorporation of TiO2 nanoparticles caused a slight red shift at 310 nm in the absorption spectra due to the interactions between the conjugated polymer chains and TiO2 nanoparticles with π–π? transition. FTIR confirmed the presence of TiO2 in the molecular structure. In PANI/TiO2 composites, two additional bands at 1623 cm?1 and 1105 cm?1 assigned to Ti–O and Ti–OC stretching modes were present. It can be concluded that Ti organic compounds are formed with an alignment structure of TiO2 particles. XRD patterns revealed that, as the TiO2 percentage was increased, the amorphous nature disappeared and the composites became more strongly oriented along the (1 1 0) direction, which showed the tetragonal structure of nanocrystalline TiO2. SEM studies revealed the formation of uniform granular morphology with average grain size of 200 nm for (50%) PANI/TiO2 nanocomposite samples.  相似文献   

17.
Facile electron injection and extraction are two key attributes desired in electron transporting layers to enhance the efficiency of planar perovskite solar cells. Herein it is demonstrated that the incorporation of alkali metal dopants in mesoporous TiO2 can effectively modulate electronic conductivity and improve the charge extraction process by counterbalancing oxygen vacancies acting as nonradiative recombination centers. Moreover, sulfate bridges (SO42?) grafted on the surface of K‐doped mesoporous titania provide a seamless integration of absorber and electron‐transporting layers that accelerate overall transport kinetics. Potassium doping markedly influences the nucleation of the perovskite layer to produce highly dense films with facetted crystallites. Solar cells made from K:TiO2 electrodes exhibit power conversion efficiencies up to 21.1% with small hysteresis despite all solution coating processes conducted under ambient air conditions (controlled humidity: 25–35%). The higher device efficiencies are attributed to intrinsically tuned electronic conductivity and chemical modification of grain boundaries enabling uniform coverage of perovskite films with large grain size.  相似文献   

18.
Rutile phase TiO2 thin films have been synthesized using chemical spray pyrolysis of titanyl acetylacetonate TiAcAc in ethanol at 500 °C. The first part of the paper focuses on the thermal decomposition behavior of the precursor by simultaneous thermogravimetry and differential thermal analysis (TG/DTA) coupled with differential scanning calorimetry (DSC). The second part of the paper focuses on the evolution of TiO2 thin films and their structural transformation with substrate temperature. XRD revealed amorphous TiO2 thin film at low substrate temperatures (<350 °C) and on high substrate temperatures anatase (3.84 g/cm3) or rutile (4.25 g/cm3) crystalline structure was obtained. The lattice constant, grain size, microstrain and the dislocation density of the film were obtained from the peak width. FTIR spectra of both anatase and rutile TiO2 revealed stretching vibration of the Ti–O bond for tetrahedral and octahedral surroundings of the titanium atom. Scanning electron micrograph showed the compactness of the rutile film.  相似文献   

19.
A novel room‐temperature method for the preparation of porous TiO2 films with high performance in dye‐sensitized solar cells (DSSCs) has been developed. In this method a small amount of TiIV tetraisopropoxide (TTIP) is added to an ethanolic paste of TiO2 nanoparticles, where it hydrolyzes in situ and connects the TiO2 particles to form a homogenous and mechanically stable film of up to 10 μm thickness without crack formation. Residual organics originating from the TTIP were removed by UV–ozone treatment of the films, leading to a remarkable improvement of the cell efficiency. Intensity‐modulated photocurrent/voltage spectroscopy (IMPS/IMVS) showed that the main effect of the UV–ozone treatment is to suppress the recombination of photogenerated electrons, thereby extending their lifetime. The efficiency was further increased by preheating the TiO2 nanoparticles before the paste preparation to remove contaminants originating from the preparation process of the particles. Solar‐to‐electric energy conversion efficiencies of 4.00 and 3.27 % have been achieved for cells with conductive glass and plastic film substrates, respectively, under illumination with AM 1.5 (100 mW cm–2) simulated sunlight.  相似文献   

20.
We report on the combined magnetization and electron paramagnetic resonance characterization of a novel Ti‐O organic–inorganic gel hybrid and the related electron–hole generation process upon UV illumination. We find that electrons are injected into the conduction band of the Ti‐O framework, photoreducing TiIV to TiIII. TiIII sites are mainly located on the surface, owing to the nanometric dimensions of the inorganic component. Surprisingly, the symmetry of the TiO6 octahedra depends on the level of illumination: in the lightly UV‐exposed samples TiIII is sited in the weakly distorted TiO6 octahedra to which methanoate groups are bonded, as suggested by electron spin echo envelope modulation (ESEEM) experiments. Extensive illumination causes structural rearrangements, leading to enhanced tetragonal TiO6 distortion and shifting the TiIII interaction towards the hydroxide groups or water. The results provide clear evidence for an interfacial charge transfer between the quantum‐size TiO lattice and coordinated species upon in situ and ex situ UV illumination at temperatures from room temperature to 5 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号