首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The microstructure and tensile properties of selective laser melted (SLM) Inconel 718 alloy were studied in the as-printed and different heat treat conditions. The SLM as-print microstructures exhibited columnar grain structures with very fine dendritic structure with segregation of elements. Apart from the standard heat treatment, three other heat treat cycle variants were carried out in an attempt to remove the extensive segregation of elements and modify the textured grain structure of the SLM as-print microstructure. Increasing the homogenization temperature reduced the segregation and coarsened the grain structure. However, the grains still remained columnar, and the material became softer with reduction in strength. After the ageing treatment, the tensile strength improved significantly for all the heat treated samples, which is typical for precipitation hardening of IN718 alloy. The microstructures of the heat treated samples exhibited the needle shaped δ, carbides, and finely dispersed γ″, γ′ phases.  相似文献   

2.
Abstract

A substantial undercooling up to 250 K was produced in the IN718 superalloy melt by employing the method of molten salt denucleating, and the microstructure evolution with undercooling was investigated. Within the achieved undercooling, 0–250 K, the solidification microstructure of IN718 undergoes two grain refinements: the first grain refinement occurs in a lower range of undercooling, which results from the ripening and remelting of the primary dendrite, and at a larger range of undercooling, grain refinement attributes to solidification shrinkage stress and lattice distortion energy originating from the rapid solidification process. A ‘lamellar eutectic anomalous eutectic’ transition was observed when undercooling exceeds a critical value of ~250 K. When undercooling is small, owing to niobium enrichment in interdendrite, the remaining liquid solidifies as eutectic (γ+Laves phase); whereas, if the undercooling achieves 250 K, the interdendrite transforms from eutectic (γ+Laves phase) to Laves phase, which results from the formation of divorced eutectic arising from the huge variance of the growth velocities of γ and Laves phases.  相似文献   

3.
In order to understand the effect of Mo alloying on the microstructural evolution of TiAl alloy, the as-cast microstructure, heat treated microstructure characteristic, and hot compression microstructure evolution of Ti-44 A1 alloy have been studied in this work. The as-cast microstructure morphology changes from(γ+α_2)lamellar colony and β/β_0+γ mixture structure to β/β_0 phase matrix widmannstatten structure,when Mo content increases from 2 at.% to 6 at.%. Affected by the relationship between β phase and αphase, the angles between the lamellar orientation and the block β/β_0 phase are roughly at 0°, 45° and90°. Comparing with heat treatment microstructure, the hot compression microstructure contains lessβ/β_0 phase, however, the β/β_0 phase containing 2 Mo alloy and 3 Mo alloy hot compressed at 1275 ℃ has the inverse tendency. In addition,(α_2 +γ) colony is decomposed by the discontinuous transformation.  相似文献   

4.
New models for twin growth and its interaction with precipitate in Inconel-718 are proposed in this paper. The measured accumulated XRD intensities to represent the quantity of the Ni3Nb(δ) phase are in agreement with its dissolution in twin/grain interior and precipitation again in twin/grain boundary. Present result shows that twin growth is associated with and similar to a “wave front” movement of twin boundary mainly resulting from the assistance of sufficient vacancies and solute atoms from dissolved Ni3Nb(δ) phase diffusing from the twin interior toward the twin boundary to build up the existed twin. This leads to the overall free energy reduction and results in twin growth. Furthermore, possible interaction of twin growth meeting NbC particle is also discussed.  相似文献   

5.
半固态高碳(C>1%)工具钢压缩变形的组织演变   总被引:3,自引:0,他引:3  
采用Gleeble-1500热/力模拟机,对电磁搅拌法制备的高碳钢半固态坯料进行压缩实验,研究半固态高碳(C>1%)工具钢在不同温度、不同变形程度和不同变形速率下压缩变形的组织演变规律.结果表明,随变形程度的增加,试样心部和边部晶粒的尺寸逐渐减小;随温度的升高,固相率降低,试样心部和边部晶粒的尺寸变大;随变形速率的提高,试样心部的晶粒尺寸减小,边部的“大结构”破碎。  相似文献   

6.
Macroscopic viscoplastic constitutive models for γγ′ Ni-base superalloys typically do not contain an explicit dependence on the underlying microstructure. Microstructure-sensitive models are of interest in many applications since microstructure can vary in components, whether intentional or not. In such cases, the use of experiments from one microstructure condition to fit macroscopic models may be too limiting. The principal microstructure attributes that can significantly affect the cyclic stress–strain response of γγ′ Ni-base superalloys are the grain size and γ′ precipitate volume fraction and size distributions. An artificial neural network (ANN) is used to correlate the material parameters of a macroscale internal state variable cyclic viscoplasticity model with these microstructure attributes using a combination of limited experiments augmented by polycrystal plasticity calculations performed on other (virtual) microstructures within the range characterized experimentally. The trained model is applied to an example of a component fatigue notch root analysis with dwell periods at peak load to demonstrate the methodology and explore the potential impact of microstructure-sensitive constitutive models on life prediction for notched structures subjected to realistic load histories.  相似文献   

7.
The microstructure evolution of the TA15 Ti-alloy in different loading zones under two kinds of multi-cycle isothermal local forging (multi-cycle local near-β forging and multi-cycle conventional forging combined with near-β heat treatment) was investigated and the mechanical properties predicted. Under the first processing route, a microstructure with small grain size was obtained with a significant difference in morphology and composition between the first and second loading zones. An equiaxial microstructure with larger size and more α-phase was obtained in the first loading zone. In the second loading zone when cooled by water after multiple forging cycles and a tri-modal microstructure (finely interlaced and disordered lamellar α, transformed β matrix, and a few equiaxed α) was obtained. The second loading zone possesses excellent room and high temperature mechanical properties. Under the second processing route, the relatively large bimodal microstructures in both loading zones are almost identical. When treated using a vacuum annealing furnace after forging, a coarse clustered lamellar secondary α-phase appeared, which has poor mechanical properties.  相似文献   

8.
《材料科学技术学报》2019,35(6):1153-1164
IN718 alloy was fabricated by laser powder bed fusion (PBF) for examination of microstructure, precipitates and mechanical properties in the as-built state and after different heat treatments. The as-built alloy had a characteristic fine cellular-dendritic microstructure with Nb, Mo and Ti segregated along the interdendritic region and cellular boundary. The as-built alloys were then subjected to solution heat treatment (SHT) at 980 °C or 1065 °C for 1 h. SHT at 980 °C led to the formation of δ-phase in the interdendritic region or cellular boundary. The segregation was completely removed by the SHT at 1065 °C, but recrystallization was observed, and the carbides decorated along the grain boundaries. The as-built alloy and alloys with SHT at 980 °C and 1065 °C were two-step aged, which consisted of annealing at 720 °C for 8 h followed by annealing at 620 °C for 8 h. Transmission electron microscopy revealed the precipitation of γ' and γ” in all alloys after two-step aging, but the amount and uniformity of distribution varied. The Vickers hardness of the PBF IN718 alloy increased from 296 HV to 467 HV after direct aging. The hardness decreased to 267 HV and 235 HV after SHT at 980 °C and 1065 °C, respectively, but increased to 458 HV and 477 HV followed by aging. The evolution of Young’s modulus after heat treatment exhibited similar trend to that of hardness. The highest hardness was observed for IN718 after SHT at 1065 °C and two-step aging due to precipitation with greater amount and uniform distribution.  相似文献   

9.
In the present work, the effect of grain size on deleterious phase precipitation in a superduplex stainless steel was investigated. The materials studied were heat treated isothermally at 800 °C, 850 °C and 900 °C for times up to 120 min. Hardness tests, light optical microscopy, scanning electron microscopy and X-ray diffraction were carried out to detect sigma and other harmful precipitate phases. The ferritic and austenitic grain sizes in the solution treated condition of the two steels analyzed were measured by electron backscattered diffraction (EBSD). Cyclic polarization corrosion tests were performed to evaluate the effect of grain size on the corrosion resistance. The results presented show that the precipitation of deleterious phases such as χ, σ and γ2, which can occur during welding and forming operations, is retarded by grain growth.  相似文献   

10.
A failure investigation has been conducted on the turbine blades used in a locomotive turbochanger, which are made from K418 Ni-base superalloy. Fractography investigation on the troubled blade indicates that cracks initiated from the surface of the concave side close to the trailing edge and propagated towards to the leading edge. The multi-origin fatigue fracture is the dominant failure mechanism of the blade. Metallographic morphology typical of over-heat damage features, such as re-dissolution of the eutectic γ + γ′, melting of the local region of the grain boundary appears in the microstructure of the airfoil part of the failed blades. Appearance of over-heat damage structure in the serviced blades makes the strength of the blade material decrease intensely to initiate fatigue cracks and make one of the blades fracture first. Fragments from the blade fractured first would crash the other blades to make the blades break or bending deformation.  相似文献   

11.
张玉  黄晓锋  马颖  闫峰云  李元东  郝远 《材料导报》2018,32(8):1283-1288
采用半固态等温热处理法对添加0%、2%(质量分数)稀土SmΦ10mm和Φ20mm的Mg-6Zn-0.4Zr合金坯料非枝晶组织演变进行研究。结果表明,未添加Sm的两种尺寸合金坯料的半固态组织都存在明显的尺寸效应。从试样的边缘到芯部,固相颗粒尺寸由小逐渐变大,圆整度趋于恶化,液相逐渐减少;此外,随着坯料尺寸增大,由边缘到芯部的半固态组织的差异也增大。添加Sm的两种合金坯料经等温热处理后,固相颗粒的尺寸效应基本消除。固相颗粒尺寸整体变得均匀且细小,同时颗粒圆整度趋于完美,适宜触变成形要求。此外,添加2%的Sm使合金的非枝晶组织演变进程加快。  相似文献   

12.
《Nanostructured Materials》1998,10(2):169-178
Nanocrystalline Inconel 718 and Ni powders were prepared using two approaches: methanol and cryogenic attritor milling. High velocity oxy-fuel (HVOF) spraying of milled Inconel 718 powders was then utilized to produce coatings with a nanocrystalline grain size. Isothermal heat treatments were carried out to study the thermal stability of the methanol milled and cryomilled powders, as well as the HVOF-derived coatings. All nanocrystalline Inconel 718 powders and coatings studied herein exhibited significant thermal stability against grain growth by maintaining a grain size around 100 nm following annealing at 1273 K for 60 min. In the case of the cryomilled nanocrystalline Ni powders, isothermal grain growth behavior was studied, from which the parameters required for the prediction of the microstructural evolution during a non-isothermal annealing were acquired. The theoretical simulation of grain growth behavior of nanocrystalline Ni during non-isothermal annealing conditions yields results that are in good agreement with the experimental results.  相似文献   

13.
对激光熔覆Inconel718合金进行粉末进行回收利用,并以该粉末作为熔融修复原料制备激光熔覆涂层,测试试样组织各项力学特性参数。研究结果表明:经过回收利用处理后,各粉末颗粒尺寸差异较大,形成了许多细小的颗粒并且外形也不太规则。提高利用次数后,获得了粒径更大的粉末颗粒,由56提高至79μm。经过筛分处理获得的杂质粉末颗粒微观组织基本都属于球形结构,其表面也较粗糙。随着粉末利用次数的增加,损失率表现出单调减小变化。在熔覆层中形成了由枝晶与等轴晶共同构成的组织相,枝晶发生了外延生长。经过更多次利用处理后,熔覆试样组织内形成了更粗大的晶粒,降低了组织分布均匀性和弯曲强度。  相似文献   

14.
Dynamically-compacted Inconel 718 powder has been heat treated in order to examine the evolution of microstructural recovery and hardness, recrystallization and grain coarsening, and interparticle-adhesion and fracture response. Following dynamic compaction the compacted powders are imperfectly bonded and the material is fairly brittle; the shock wave has caused significant hardening; local microstructures and properties are variable from particle surface to interior. Following annealing at 900 to 1000° C, virtually complete recrystallization occurs giving rise to a material which is softened and has a fine-scale microstructure. Little improvement in fracture response occurs, however, because the oxidized prior-particle surfaces do not weld together. Shock-wave consolidation offers the possibility of producing monolithic, microstructurally-fine materials, providing suitable post-consolidation thermo-mechanical processes are developed to overcome the limited bonding problem.  相似文献   

15.
Abstract

Ferrite grain refinement by accelerated cooling has been studied in a carbon steel. The size of ferrite grains dα formed by continuous cooling transformation from polygonal austenite has been measured as a function of cooling rate and austenite grain size dγ. In the cooling rate range studied (q= 0·05–5 K s?1), dα was found to be proportional to q?0·26dγ0·46. The mechanism of grain refinement by accelerated cooling is discussed, and it is shown that this occurs in the transformation where the ratio of nucleation to growth rate increases with a decrease in temperature. The austenite grain size dependence of ferrite grain size is shown to become progressively large as the nucleation mode changes from homogeneous to grain surface to edge to corner. A theoretical estimation of ferrite grain size formed by continuous cooling transformation was attempted on the basis of nucleation and growth rates. In the alloy studied, ferrite grain size was theoretically estimated to be proportional to q?0·17dγ0·33. This was in close agreement with the dependence obtained in the present experiment.

MST/466  相似文献   

16.
An as-received (AR) DIN 22NiMoCr37 nuclear reactor pressure vessel steel has been heat treated for 1 h at austenitising temperatures of 1373 and 1473 K to obtain different austenite grain sizes. After austenitising, the samples were water quenched, tempered for 2 h at 923 K, water quenched and then held isothermally at 793 K for 180 h before final air-cooling. The AR condition had a tempered bainite microstructure and a prior austenite grain size of 30 μm, whereas the heat treated conditions were tempered martensite and had a prior austenite grain size of approximately 100 μm for the 1373 K condition and ‘extraordinary’ large austenite grains (>1 mm diameter) for the 1473 K condition. Their low temperature fracture properties were determined and were related to the susceptibility to segregation induced embrittlement. Despite the heat treated conditions having a larger prior austenite grain size compared to the AR condition, at a given testing temperature, the tempered martensitic 1373 K condition generally exhibited higher strength and higher fracture toughness values at 123 K. The heat treated conditions generally exhibited higher local fracture stress (σf) values in 0.2 mm blunt notch SE(B)-0.4T specimens at 123 and 77 K.  相似文献   

17.
The effect of alloying elements such as Al, Ti, Nb, W and Co in INCONEL 718 type alloys on phase precipitation behavior has been investigated by means of Thermo-Calc software. The results show that both the solvus temperature and fraction of phases in 718 type alloys has been significantly changed with variation these alloying elements. The experimental results also reveal that precipitation kinetics of δ, γ″ and γ′ phases in developed 718 type alloys have been changed. The alloy with higher content of Al shows microstructural stability superior to that of conventional 718 alloy. Based on thermodynamical and experimental results, the optimum content of Al, Ti and Nb of the developed 718 type alloy without W and Co additions has been determined to be 1%, 1% and 5.5%, respectively.  相似文献   

18.
In this study, the crack propagation behaviors in the equiaxed and equiaxed-columnar grain regions of a heat-treated laser additive manufacturing (LAM) TC11 alloy with a special bi-modal microstructure are investigated. The results indicate that the alloy presents a special bi-modal microstructure that comprises a fork-like primary α (αp) phase surrounded by a secondary α colony (αs) in the β phase matrix after the heat treatment is completed. The samples demonstrate a fast crack growth rate with larger da/dN values through the equiaxed grain sample versus across the equiaxed-columnar grain sample at low ΔK values (<13.8). The differences that are observed between the crack propagation behaviors (in the crack initiation stage) of the samples can be mostly attributed to the different size and morphology of the αp lamellae and αs colony within the grains in the equiaxed and columnar grain regions rather than the grain boundaries. The cracks prefer to grow along the α/β boundary with a smooth propagation route and a fast propagation rate in the equiaxed grain region, where the αp and α clusters have a large size. However, in the columnar grain region, small and randomly distributed αp lamellae generate a zigzag-shaped propagation path with a reduction in the da/dN value. Additionally, the change in the size of the αp lamellae in the equiaxed grains (heat affected bands, HAB) is also observed to influence the propagation behavior of the crack during the crack initiation stage.  相似文献   

19.
A copper alloy, Cu0.1 %Zr, was subjected to severe plastic deformation at room temperature using quasi-constrained high-pressure torsion. Disks were strained through different numbers of revolutions up to a maximum of ten turns under an applied pressure of 6.0 GPa and then examined to evaluate the evolution in the Vickers microhardness, Hv, and the microstructure. The results show lower values of Hv in the center regions of the disks in the early stages of processing but a gradual evolution to a high degree of hardness homogeneity after five and ten turns. Under conditions of hardness homogeneity, the distributions of the grain boundary misorientations are essentially identical at the center and the periphery of the sample. Homogeneity was further confirmed by conducting tensile testing at elevated temperatures where similar stress–strain curves and similar elongations to failure were recorded after processing through five and ten turns of HPT.  相似文献   

20.
Fatigue crack initiation and propagation behaviour in subsolvus heat treated turbine disc alloy N18 has been assessed in air and vacuum at 650 and 725 °C under three-point loading. Fatigue crack initiation processes have been evaluated using single edge U-notch specimens under a 1-1-1-1 trapezoidal loading waveform along with interrupted tests at 650 °C to allow intermittent observations of the notch surface. The results show apparent grain boundary (GB) oxidation can occur under an oxygen partial pressure of 10−2–10−3 Pa. Cracks mainly initiate from grain boundaries or γ/γ′ interfaces due to the formation and subsequent cracking of Cr-rich and/or Co-rich oxides, and occasionally initiate from surface pores. Fatigue life in these tests appears to be dominated by this crack initiation process and is significantly reduced by increasing temperature and/or application of an oxidizing environment. Crack growth tests conducted under 1-1-1-1 and 1-20-1-1 loading waveforms indicate that oxidation significantly degrades the crack growth resistance of N18 and is associated with more intergranular fracture surface features. Additional oxidation effects on propagation caused by higher temperature or prolonging dwell time appear limited, whereas a prolonged dwell period seems to instead promote additional creep process, which further enhance crack growth, especially at higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号