首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal-based anticancer drugs, in particular platinum-drugs, have been investigated for the treatment of cancer for the last 40 years. A small set of platinum-based drugs have meanwhile received FDA approval for the treatment of various cancer. Cisplatin and its relatives are currently one of the most widely used anticancer drugs. The use is however associated with significant side effects and rising drug resistance. To combat these problems, drug delivery carriers have been developed to increase the protection of the drug and increase efficacy. Metal-based drugs represent a rather unique drug delivery challenge. Most anticancer drugs are either physically encapsulated into a polymer matrix or they can be conjugated to the polymer via a degradable linker. While both pathways are possible for metal-based drugs, the conjugation to the polymer can be carried via labile or permanent ligands. In addition, the prodrug strategy using the drug in the higher oxidation state is a common approach that has been widely tested for platinum drug. The delivery of platinum drugs is now a mature field and the various conjugation techniques have been combined with a range of drug carriers including dendrimers, micelles and solid polymer nanoparticles. Hybrids of macromolecular metal complexes with inorganic nanoparticles have been tested in recent years to combine the ability to deliver the drug with imaging properties. An emerging trend is the surface decoration of the polymeric nanoparticles with targeting ligands such as folates. The advanced state of this field is evident by the fact that some macromolecular platinum drugs even advanced to the clinic. While the delivery of platinum drugs has been well explored, the delivery of other metal-based drugs based on gold, ruthenium or cobalt is still in their infancy.  相似文献   

2.
Brain tumors such as glioblastoma are typically associated with an unstoppable cell proliferation with aggressive infiltration behavior and a shortened life span. Though treatment options such as chemotherapy and radiotherapy are available in combating glioblastoma, satisfactory therapeutics are still not available due to the high impermeability of the blood–brain barrier. To address these concerns, recently, multifarious theranostics based on nanotechnology have been developed, which can deal with diagnosis and therapy together. The multifunctional nanomaterials find a strategic path against glioblastoma by adjoining novel thermal and magnetic therapy approaches. Their convenient combination of specific features such as real-time tracking, in-depth tissue penetration, drug-loading capacity, and contrasting performance is of great demand in the clinical investigation of glioblastoma. The potential benefits of nanomaterials including specificity, surface tunability, biodegradability, non-toxicity, ligand functionalization, and near-infrared (NIR) and photoacoustic (PA) imaging are sufficient in developing effective theranostics. This review discusses the recent developments in nanotechnology toward the diagnosis, drug delivery, and therapy regarding glioblastoma.  相似文献   

3.
Medical applications of nanoparticular systems have attracted considerable attention because of their potential use in therapeutic targeting of disease tissues and their lower level of toxicity against healthy tissue, relative to traditional pharmaceutical drugs. The use of nanoparticular systems has been shown to overcome the limitations of most anticancer drugs in clinical applications. In particular, the improved performance of smarted nanoparticular system for solving the drug resistance problems that typically interrupt tumor treatment has provided a promising strategy for successful tumor chemotherapy. This review highlights recent studies that have examined the therapeutic effect of nanoparticular systems on drug-resistant tumors and presents insight on how they work.  相似文献   

4.
Epigenetic mechanisms, including post-translational modifications of DNA and histones that influence chromatin structure, regulate gene expression during normal development and are also involved in carcinogenesis and cancer progression. The histone methyltransferase G9a (euchromatic histone lysine methyltransferase 2, EHMT2), which mostly mediates mono- and dimethylation by histone H3 lysine 9 (H3K9), influences gene expression involved in embryonic development and tissue differentiation. Overexpression of G9a has been observed in several cancer types, and different classes of G9a inhibitors have been developed as potential anticancer agents. Here, we review the emerging evidence suggesting the involvement of changes in G9a activity in brain tumors, namely glioblastoma (GBM), the main type of primary malignant brain cancer in adults, and medulloblastoma (MB), the most common type of malignant brain cancer in children. We also discuss the role of G9a in neuroblastoma (NB) and the drug development of G9a inhibitors.  相似文献   

5.
紫杉醇聚合物胶束载药体系的研究进展   总被引:1,自引:0,他引:1  
紫杉醇(paclitaxel,PTX)是一种常用的抗肿瘤药物,但其极差的水溶性限制了其在临床上的应用。为使其能更好的为人体所利用,近年来,研究者们开发了多种紫杉醇载药体系,其中聚合物胶束载药体系以其特有的优点为目前研究的热点,并具有广阔的发展前景。介绍了近年来采用两亲嵌段共聚物制备紫杉醇聚合物给药体系的研究进展。展望了该体系今后的发展方向。  相似文献   

6.
Considering the high increase in mortality caused by cancer in recent years, cancer drugs with novel mechanisms of anticancer action are urgently needed to overcome the drawbacks of platinum-based chemotherapeutics. Recently, in the area of metal-based cancer drug development research, the concept of catalytic cancer drugs has been introduced with organometallic RuII, OsII, RhIII and IrIII complexes. These complexes are reported as catalysts for many important biological transformations in cancer cells such as nicotinamide adenine dinucleotide (NAD(P)H) oxidation to NAD+, reduction of NAD+ to NADH, and reduction of pyruvate to lactate. These unnatural intracellular transformations with catalytic and nontoxic doses of metal complexes are known to severely perturb several important biochemical pathways and could be the antecedent of next-generation catalytic cancer drug development. In this concept, we delineate the prospects of such recently reported organometallic RuII, OsII, RhIII and IrIII complexes as future catalytic cancer drugs. This new approach has the potential to deliver new cancer drug candidates.  相似文献   

7.
Glioblastoma (GBM) is known to be the most common and lethal primary malignant brain tumor. Therapies against this neoplasia have a high percentage of failure, associated with the survival of self-renewing glioblastoma stem cells (GSCs), which repopulate treated tumors. In addition, despite new radical surgery protocols and the introduction of new anticancer drugs, protocols for treatment, and technical advances in radiotherapy, no significant improvement in the survival rate for GBMs has been realized. Thus, novel antitarget therapies could be used in conjunction with standard radiochemotherapy approaches. Targeted therapy, indeed, may address specific targets that play an essential role in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Significant cellular heterogeneity and the hierarchy with GSCs showing a therapy-resistant phenotype could explain tumor recurrence and local invasiveness and, therefore, may be a target for new therapies. Therefore, the forced differentiation of GSCs may be a promising new approach in GBM treatment. This article provides an updated review of the current standard and experimental therapies for GBM, as well as an overview of the molecular characteristics of GSCs, the mechanisms that activate resistance to current treatments, and a new antitumor strategy for treating GSCs for use as therapy.  相似文献   

8.
Glioblastoma represents the highest grade of brain tumors. Despite maximal resection surgery associated with radiotherapy and concomitant followed by adjuvant chemotherapy with temozolomide (TMZ), patients have a very poor prognosis due to the rapid recurrence and the acquisition of resistance to TMZ. Here, initially considering that TMZ is a prodrug whose activation is pH-dependent, we explored the contribution of glioblastoma cell metabolism to TMZ resistance. Using isogenic TMZ-sensitive and TMZ-resistant human glioblastoma cells, we report that the expression of O6-methylguanine DNA methyltransferase (MGMT), which is known to repair TMZ-induced DNA methylation, does not primarily account for TMZ resistance. Rather, fitter mitochondria in TMZ-resistant glioblastoma cells are a direct cause of chemoresistance that can be targeted by inhibiting oxidative phosphorylation and/or autophagy/mitophagy. Unexpectedly, we found that PARP inhibitor olaparib, but not talazoparib, is also a mitochondrial Complex I inhibitor. Hence, we propose that the anticancer activities of olaparib in glioblastoma and other cancer types combine DNA repair inhibition and impairment of cancer cell respiration.  相似文献   

9.
A long-standing problem in cancer chemotherapy is the lack of tumor-specific treatments. Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing undesirable severe side effects. Therefore, the development of innovative and efficacious tumor-specific drug delivery protocols or systems is urgently needed. A rapidly growing tumor requires various nutrients and vitamins. Thus, tumor cells overexpress many tumor-specific receptors, which can be used as targets to deliver cytotoxic agents into tumors. This Account presents our research program on the discovery and development of novel and efficient drug delivery systems, possessing tumor-targeting ability and efficacy against various cancer types, especially multidrug-resistant tumors. In general, a tumor-targeting drug delivery system consists of a tumor recognition moiety and a cytotoxic warhead connected directly or through a suitable linker to form a conjugate. The conjugate, which can be regarded as a "guided molecular missile", should be systemically nontoxic, that is, the linker must be stable in blood circulation, but upon internalization into the cancer cell, the conjugate should be readily cleaved to regenerate the active cytotoxic warhead. These novel "guided molecular missiles" are conjugates of the highly potent second-generation taxoid anticancer agents with tumor-targeting molecules through mechanism-based cleavable linkers. These conjugates are specifically delivered to tumors and internalized into tumor cells, and the potent taxoid anticancer agents are released from the linker into the cytoplasm. We have successfully used omega-3 polyunsaturated fatty acids, in particular DHA, and monoclonal antibodies (for EGFR) as tumor-targeting molecules for the conjugates, which exhibited remarkable efficacy against human tumor xenografts in animal models. We have developed self-immolative disulfide linkers wherein the glutathione-triggered cascade drug release takes place to generate the original anticancer agent. The use of disulfide linkers is attractive beacuse it takes into account the fact that the concentration of glutathione is much higher (>1000 times) in tumor cells than in blood plasma. In order to monitor and elucidate the mechanism of tumor-targeting, internalization, and drug release, several fluorescent and fluorogenic probes using biotin as the tumor-targeting module were developed and used. Then, the progressive occurrence of the designed receptor-mediated endocytosis, drug release, and drug binding to the target protein (microtubules) has been successfully observed and confirmed by means of confocal fluorescence microscopy. These "guided molecular missiles" provide bright prospects for the development of highly efficacious new generation drugs for cancer chemotherapy.  相似文献   

10.
The electrospun biocompatible poly (ε-caprolactonediol)-based polyurethane (PCL-Diol-b-PU) core/shell nanofibrous scaffolds were prepared via the coaxial electrospinning process. Temozolomide (TMZ) as an anticancer drug was loaded into the core of fibers to control the release of TMZ for the treatment of glioblastoma. The properties of nanofibers were characterized using XRD, FTIR, SEM, and TEM analysis. The sustained delivery of TMZ without initial burst release was achieved from all prepared core–shell nanofibrous samples over 30 days. The cytotoxicity results revealed that the TMZ-loaded PCL-Diol-b-PU core–shell nanofibers could be used as a drug delivery implant to deliver TMZ against glioblastoma tumors.  相似文献   

11.
Terpenoids with lactone moieties have been indicated to possess high bioactivity. Certain terpenoid lactones exist in nature, in plants and animals, but they can also be obtained by chemical synthesis. Terpenoids possessing lactone moieties are known for their cytotoxic, anti-inflammatory, antimicrobial, anticancer, and antimalarial activities. Moreover, one terpenoid lactone, artemisinin, is used as a drug against malaria. Because of these abilities, there is constant interest in new terpenoid lactones that are both isolated and synthesized, and their biological activities have been verified. In some cases, the activity of the terpenoid lactone is specifically connected to the lactone moiety. Recent works have revealed that new terpenoid lactones can demonstrate such functions and are thus considered to be potential active agents against many diseases.  相似文献   

12.
More than 70 % of women with ovarian cancer are diagnosed with advanced-stage disease, which is initially treated with cytoreductive surgery, and combination chemotherapy with platinum-based compounds. Most patients initially respond to platinum-based therapy, but eventually up to 80 % of this responsive cohort becomes refractory due to the development of platinum resistance. This review discusses current and potential therapeutic approaches that exploit biomaterial-based applications to combat platinum resistance either by enhancing the delivery of platinum-based drugs or prodrugs, delivering other toxic non-platinum-based bioactive factors (by themselves or in combination with platinum-based drugs) or by delivering other bioactive factors that re-sensitize resistant ovarian cancer cells to these drugs. The types of materials that are used, the bioactive factors applied (i.e., drug or gene delivery), and the specific agents that are employed to target these types of cancer cells are discussed. We conclude that the unique attributes of biomaterial-based applications can be further explored toward overcoming platinum-resistant ovarian cancer as monotherapy, or in combination with other treatment strategies.  相似文献   

13.
C2‐aryl‐ and C2‐alkyl‐7‐deazahypoxanthines as analogues of marine alkaloid rigidins were prepared utilizing novel synthetic methods developed for the construction of the pyrrolo[2,3‐d]pyrimidine ring system. The new compounds exhibited sub‐micromolar to nanomolar antiproliferative potencies against a panel of cell lines including in vitro models for drug‐resistant tumors, such as glioblastoma, melanoma and non‐small‐cell lung cancer. A selected representative C2‐methyl‐7‐deazahypoxanthine was found to inhibit microtubule dynamics in cancer cells, lending evidence for tubulin targeting as a mode of action for these compounds in cancer cells. The results of the docking studies utilizing the colchicine site on β‐tubulin were consistent with the observed structure–activity relationship data, including an important finding that derivatization at C2 with linear alkyl groups leads to the retention of activity, thus permitting the attachment of a biotin‐containing linker for the subsequent proteomics assays. Because many microtubule‐targeting compounds are successfully used to fight cancer in the clinic, the reported antitubulin rigidin analogues have significant potential as new anticancer agents.  相似文献   

14.
The response to chemotherapy in cancer patients is frequently compromised by drug resistance. Although chemoresistance is a multifactorial phenomenon, many studies have demonstrated that altered drug metabolism through the expression of phase II conjugating enzymes, including glutathione transferases (GSTs), in tumor cells can be directly correlated with resistance against a wide range of marketed anticancer drugs. In particular, overexpression of glutathione transferase P1 (GSTP1) appears to be a factor for poor prognosis during cancer therapy. Former and ongoing clinical trials have confirmed GSTP1 inhibition as a principle for antitumor therapy. A new series of 1,2,4‐trioxane GSTP1 inhibitors were designed via a type II photooxygenation route of allylic alcohols followed by acid‐catalyzed peroxyacetalization with aldehydes. A set of novel inhibitors exhibit low micromolar to high nanomolar inhibition of GSTP1, revealing preliminary SAR for further lead optimization. Importantly, high selectivity over another two human GST classes (GSTA1 and GSTM2) has been achieved. The trioxane GSTP1 inhibitors may therefore serve as a basis for the development of novel drug candidates in overcoming chemoresistance.  相似文献   

15.
16.
17.
Some members of 4-aminoquinolines and 8-aminoquinolines have been found to provide adjuvant effects when used in combination with anti-cancer drugs. The clinical co-administration of active anti-cancer drugs with other drugs acting as potentiating agents has shown considerable merits when compared to a single-drug administration. Anti-cancer drugs are often toxic when delivered straight, but the bio-reversible drug conjugation of anticancer drugs to water-soluble macromolecular carriers has proved to enhance the therapeutic effectiveness of anticancer drugs. Following facilitated pharmacokinetics pathways, the conjugates, acting as pro-drugs, will release the active drug species in the transformed target cells and their designs are geared towards reducing pharmacological barriers of toxicity, drug resistance and poor bioavailability encountered with currently used anti-cancer drugs. This paper describes the synthesis of water-soluble macromolecular carriers containing 4- and 8-aminoquinolines that are bio-reversibly anchored with cytotoxic drugs. The conjugates and co-conjugates are isolated as water soluble solids and characterized by NMR-spectroscopy.  相似文献   

18.
Recent findings on the molecular basis of ovarian cancer development and progression create new opportunities to develop anticancer medications that would affect specific metabolic pathways and decrease side systemic toxicity of conventional treatment. Among new possibilities for cancer chemoprevention, much attention is paid to curcumin—A broad-spectrum anticancer polyphenolic derivative extracted from the rhizome of Curcuma longa L. According to ClinicalTrials.gov at present there are no running pilot studies, which could assess possible therapeutic benefits from curcumin supplementation to patients with primary epithelial ovarian cancer. Therefore, the goal of this review was to evaluate potential preclinical properties of curcumin and its new analogues on the basis of in vivo and in vitro ovarian cancer studies. Curcumin and its different formulations have been shown to display multifunctional mechanisms of anticancer activity, not only in platinum-resistant primary epithelial ovarian cancer, but also in multidrug resistant cancer cells/xenografts models. Curcumin administered together with platinum-taxane chemotherapeutics have been reported to demonstrate synergistic effects, sensitize resistant cells to drugs, and decrease their biologically effective doses. An accumulating body of evidence suggests that curcumin, due to its long-term safety and an excellent profile of side effects should be considered as a beneficial support in ovarian cancer treatment strategies, especially in patients with platinum-resistant primary epithelial recurrent ovarian cancer or multidrug resistant disease. Although the prospect of curcumin and its formulations as anticancer agents in ovarian cancer treatment strategy appears to be challenging, and at the same time promising, there is a further need to evaluate its effectiveness in clinical studies.  相似文献   

19.
Potential drug molecules are often discarded due to poor physicochemical properties and pharmacokinetic profiles. As such, research into the use of multicomponent crystal systems (such as salts and co‐crystals) is currently being conducted with the aim of improving the properties of the molecule, without altering the bioactivity of the drug. Although numerous studies have been performed on a wide variety of drug molecules, research with antimalarial drug molecules seems to have been neglected. With many of the current drugs becoming inactive due to resistance, there is an urgent need to find effective drugs with good pharmacokinetic profiles. The objective of this review is therefore to determine the extent to which multicomponent crystal systems have been used in antimalarial chemotherapy and whether this method provides a viable alternative to discarding potential drug candidates.  相似文献   

20.
It was recently reported that female survivors of breast cancer have a lower risk of Alzheimer’s disease (AD). This observation led to the hypothesis that there is a link between cancer and AD. This Viewpoint provides an analysis of the consequences of this hypothesis, not only from the perspective of drug discovery for new treatments, but above all, the awareness that any AD chemotherapy will require drug administration over longer periods of time before any cognitive effects are observed. Because such drugs will probably act as neuroprotective agents, slowing the progression of AD rather than curing it, they should be prescribed as soon as the first AD symptoms are detected. After a general survey of anticancer drugs that have potential therapeutic value for AD chemotherapy, new drugs that could affect specific signal transduction pathways known to be activated by anticancer drugs are presented, with the unfolding protein response pathway being one of the most relevant biological targets for new AD chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号