首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of bio-oil by pyrolysis with a high heating rate (500 K s−1) and hydrothermal liquefaction (HTL) of Chlamydomonas reinhardtii was compared. HTL led to bio-oil yield decreasing from 67% mass fraction at 220 °C to 59% mass fraction at 310 °C whereas the bio-oil yield increased from 53% mass fraction at 400 °C to 60% mass fraction at 550 °C for pyrolysis. Energy ratios (energy produced in the form of bio-oil divided by the energy content of the initial microalgae) between 66% at 220 °C and 90% at 310 °C in HTL were obtained whereas it was in the range 73–83% at 400–550 °C for pyrolysis. The Higher Heating Value of the HTL bio-oil was increasing with the temperature while it was constant for pyrolysis. Microalgae cultivation in aqueous phase produced by HTL was also investigated and showed promising results.  相似文献   

2.
Spent coffee grounds (SCG) were liquefied in hot-compressed water to produce crude bio-oil via hydrothermal liquefaction (HTL) in a 100 cm3 stainless-steel autoclave reactor in N2 atmosphere. We investigated the effects of operating parameters such as retention times (5 min, 10 min, 15 min, 20 min and 25 min), reaction temperatures (200 °C, 225 °C, 250 °C, 275 °C and 300 °C), and water/feedstock mass ratios (5:1, 10:1, 15:1 and 20:1) and initial pressure of process gas (2.0 MPa and 0.5 MPa) on the yield and properties of the resulting crude bio-oil. The highest yield of the crude bio-oil (47.3% mass fraction) was obtained at conditions of 275 °C, 10 min retention time and water/feedstock mass ratio of 20:1 with an initial pressure of 2.0 MPa. The elemental analysis of the produced crude bio-oil revealed that the oil product had a higher heating value (HHV) of 31.0 MJ kg−1, much higher than that of the raw material (20.2 MJ kg−1). GC–MS and FT-IR measurements showed that the main volatile compounds in the crude bio-oil were long chain aliphatic acids and esters.  相似文献   

3.
Hydrothermal liquefaction (HTL) of waste Cyanophyta biomass at different temperatures (factor A, 260–420 °C), times (factor B, 5–75 min) and algae/water (a/w) ratios (factor C, 0.02–0.3) by single reaction condition and Response Surface Method (RSM) experiments was investigated. By single reaction condition runs, maximum total bio-oil yield (29.24%) was obtained at 350 °C, 60 min and 0.25 a/w ratio. Maximum bio-oil HHV of 40.04 MJ/kg and energy recovery of 51.09% was achieved at 350 °C, 30 min, 0.1 a/w ratio and 350 °C, 60 min, 0.25 a/w ratio, respectively. RSM results indicate that effect of AB interaction was significant on light bio-oil yield. Both AC and AB had more remarkable influence than BC on heavy bio-oil yield and aqueous total organic carbon (TOC) recovery whereas BC was noticeable on ammonia nitrogen (NH3N) recovery in aqueous products. By model-based optimization of highest bio-oil yield, the highest bio-oil yield reached 31.79%, increasing by 8.72% after RSM optimization, and light and heavy bio-oil yield was 17.44% and 14.35%, respectively. Long-chain alkanes, alkenes, ketones, fatty acids, phenols, benzenes, amides, naphthalenes were the main components in light bio-oil. Some alcohols, phenols and aromatics were primarily found in heavy bio-oil. Solid residue after HTL consisted of numerous microparticles (~5 μm) observed by Scanning Electron Microscopy (SEM). Energy Dispersive Spectrometer (EDS) analysis shows these particles primarily contained C, O, Mg, P and microelements, derived from Cyanophyta cells.  相似文献   

4.
《能源学会志》2020,93(5):2025-2032
Canada has the third-largest oil sand reserves in the world as a result of which, it generates considerable amounts of light gas oil and heavy gas oil through petroleum distillation. With the escalating energy demands, it has become essential to explore alternative fuel resources from biomass and petrochemical residues. This study explores the potential of supercritical water gasification to transform light and heavy gas oils to hydrogen-rich syngas through the optimization of process conditions such as temperature (375–675 °C), feed concentration (20–35 wt%) and reaction time (30–75 min). Nickel-supported functionalized carbon nanotubes (10%Ni/FCNT) were synthesized for application in catalytic supercritical water gasification. The functionalization of carbon nanotubes resulted in an increase in their surface area from 108 m2/g (in pristine CNT) to 127 m2/g (in FCNT) and 122 m2/g (in 10%Ni/FCNT). The impregnation of catalytic nickel particles onto carbon nanotubes was confirmed through X-ray diffraction (XDR) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). Fourier-transform infrared (FTIR) spectroscopy of both gas oils revealed the presence of aliphatics, alkyl-aryl ethers and sulfur-containing compounds among several other aromatics. Light gas oil revealed higher hydrogen yields of 3.32 mol/kg compared to that of heavy gas oil (2.79 mol/kg) at optimal process conditions, i.e. 675 °C and 75 min, 20 wt% feed concentration. However, 10%Ni/FCNT enhanced hydrogen yields (4.46 mol/kg), total gas yield (9.22 mol/kg), hydrogen selectivity (94%) and lower heating value (1685 MJ/kg) of product gases obtained from light gas oil in contrast to heavy gas oil. This study indicates a tremendous potential of gas oils for hydrogen generation via hydrothermal gasification.  相似文献   

5.
Microalgae (N. chlorella) hydrothermal liquefaction (HTL) was conducted at 320 °C for 30 min to directly obtain original aqueous phase with a solvent-free separation method, and then the supercritical water gasification (SCWG) experiments of the aqueous phase were performed at 450 and 500 °C for 10 min with different catalysts (i.e., Pt-Pd/C, Ru/C, Pd/C, Na2CO3 and NaOH). The results show that increasing temperature from 450 to 500 °C could improve H2 yield and TGE (total gasification efficiency), CGE (carbon gasification efficiency), HGE (hydrogen gasification efficiency), TOC (total organic carbon) removal efficiency and tar removal efficiency. The catalytic activity order in improving the H2 yield was NaOH > Na2CO3 > None > Pd/C > Pt-Pd/C > Ru/C. Ru/C produced the highest CH4 mole fraction, TGE, CGE, TOC removal efficiency and tar removal efficiency, while NaOH led to the highest H2 mole fraction, H2 yield and HGE at 500 °C. Increasing temperature and adding proper catalyst could remarkably improve the SCWG process above, but some N-containing compounds were difficult to be gasified. This information is valuable for guiding the treatment of the aqueous phase derived from microalgae HTL.  相似文献   

6.
The present study deals with the production of biodiesel using waste fish oil. The research assesses the effect of the transesterification parameters on the biodiesel yield and its properties, including temperature (40–60 °C), molar ratio methanol to oil (3:1–9:1) and reaction time (30–90 min). The experimental results were fitted to complete quadratic models and optimized by response surface methodology. All the biodiesel samples presented a FAME content higher than 93 wt.% with a maximum, 95.39 wt.%, at 60 °C, 9:1 of methanol to oil ratio and 90 min. On the other hand, a maximum biodiesel yield was found at the same methanol to oil ratio and reaction time conditions but at lower temperature, 40 °C, which reduced the saponification of triglycerides by the alkaline catalyst employed. Adequate values of kinematic viscosity (measured at 30 °C) were obtained, with a minimum of 6.30 mm2/s obtained at 60 °C, 5.15:1 of methanol to oil ratio and 55.52 min. However, the oxidative stability of the biodiesels produced must be further improved by adding antioxidants because low values of IP, below 2.22 h, were obtained. Finally, satisfactory values of completion of melt onset temperature, ranging from 3.31 °C to 3.83 °C, were measured.  相似文献   

7.
《Biomass & bioenergy》1999,16(5):377-383
The effect of the N/C (Nitrogen/Carbon (weight/weight)) ratio on the behavior of nitrogen in biomass liquefaction was examined. Cellulose and ammonia were selected as the simplest carbon and nitrogen sources, respectively. After reaction at 300°C for 1 h, the reaction mixture was separated into oil-A (water soluble), oil-B (water insoluble), aqueous phase and residue. Both the yield and nitrogen content of the total oil (oil-A+oil-B) increased with increasing N/C ratio. On the other hand, the yield of residue decreased with increasing N/C ratio. These results show that ammonia acts both as a reactant and as a basic catalyst during the liquefaction of ammonia and cellulose. Distribution of nitrogen in the total oil showed the highest value (25.0%) at 0.18 N/C ratio and was small in the range of low N/C ratio. In the aqueous phase, soluble forms of organic nitrogen are recognized, while ammonia nitrogen increased with increasing N/C ratio. Distribution of nitrogen into the residue decreased with increasing N/C ratio. In the obtained oil, more than 60 compounds were detected by GC–MS. We identified 14 nitrogen-containing compounds, which were partly aromatic compounds. The liquefaction of cellulose and ammonia consisted of a very complicated combination of various reactions.  相似文献   

8.
Rapeseed straws are recoverable lignocellulosic biomass for second generation bioethanol production. Therefore, a pretreatment step is recommended in order to increase accessibility of enzymes to sugars. As a pretreatment step in this study, several innovative technologies have been performed in order to investigate their efficiency for delignification and enzymatic hydrolysis purposes: microwaves (MW), high voltage electrical discharges (HVED) and ultrasounds (US). As a key processing parameter, different levels of energy input were studied MW (1832–7328 kJ/kg), US (916–3664 kJ/kg) and HVED (204–814 kJ/kg) corresponding to a treatment duration range of 10–40 min. Treatment temperature (60–90 °C) and medium alkalinity (0.125–0.5 M) impact was also investigated and optimized based on sugar and soluble lignin contents in black liquor, and lignin removal yields. Delignification yields increased from 28.3%, 28.6% and 31.2% for 10 min of treatment to 38.4%, 41.5% and 42.3% for 40 min of treatment, respectively for MW, US and HVED. However, in order to achieve the same efficiency the energy required by HVED is 9 times and 4.5 times less than that required by MW and US respectively. Treatment temperature also revealed to be important as sugars yields increased by 41.6% when temperature increased from 60 °C to 90 °C for HVED and the optimal medium alkalinity was found to be 0.3 M. Finally, better enzymatic hydrolysis yields were obtained and correlated to better delignification performances improving material accessibility.  相似文献   

9.
The present work reports the production of biodiesel from Silurus triostegus Heckel fish oil (STFO) through alkaline-catalyzed transesterification by using potassium hydroxide (KOH) as an alkaline catalyst with methanol. Chemical and physical properties of the extracted oil were determined. It was found that STFO has a low acid value (1.90 mg KOH/g oil); hence no pre-treatment such as acid esterification is required to produce the biodiesel. The influence of the experimental parameters such as KOH concentration (0.25–1.0% w/w of oil), methanol to oil molar ratio (3:1, 6:1, 9:1 and 12:1), reaction temperature (32, 45 and 60 °C), reaction duration (30, 60, 90 and 120 min), type of the catalyst (potassium or sodium hydroxide) and step multiplicity (single- and two-step transesterification) on the yield of the biodiesel were investigated. The maximum biodiesel yield (96%) was obtained under the optimized parameters of the transesterification (KOH 0.50% w/w, 6:1 methanol to oil, at 32 °C for 60 min). The properties of the produced biodiesel were found to conform with the ASTM standard, indicating its suitability for internal combustion engines. Blending of the produced biodiesel with petro diesel with various volume percentages was investigated as well.  相似文献   

10.
《能源学会志》2020,93(2):581-590
Hydrothermal liquefaction (HTL) of Ulva prolifera macroalgae (UP) was carried out in the presence of three zeolites based catalysts (ZSM-5, Y-Zeolite and Mordenite) with the different weight percentage (10–20 wt%) at 260–300 °C for 15–45 min. A comparison between non-catalytic and catalytic behavior of ZSM-5, Y-Zeolite, and Mordenite in the conversion of Ulva prolifera showed that is affected by properties of zeolites. Maximum bio-oil yield for non-catalytic liquefaction was 16.6 wt% at 280 °C for 15 min. The bio-oil yield increased to 29.3 wt% with ZSM-5 catalyst (15.0 wt%) at 280 °C. The chemical components and functional groups present in the bio-oils are identified by GC-MS, FT-IR, 1H-NMR, and elemental analysis techniques. Higher heating value (HHV) of bio-oil (32.2–34.8 MJ/kg) obtained when catalyst was used compared to the non-catalytic reaction (21.2 MJ/kg). The higher de-oxygenation occurred in the case of ZSM-5 catalytic liquefaction reaction compared to the other catalyst such as Y-zeolite and mordenite. The maximum percentage of the aromatic proton was observed in bio-oil of ZSM-5 (29.7%) catalyzed reaction and minimum (1.4%) was observed in the non-catalyst reaction bio-oil. The use of zeolites catalyst during the liquefaction, the oxygen content in the bio-oil reduced to 17.7%. Aqueous phase analysis exposed that presence of valuables nutrients.  相似文献   

11.
Hydrogen is a sustainable, renewable and clean energy carrier that meets the increasing energy demand. Pure hydrogen is produced by the hydrolysis of sodium borohydride (NaBH4) using a catalyst. In this study, Ni/TiO2 catalysts were synthesized by the sol-gel technique and characterized by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) methods. The effects of Ni loading ratio (20–40%), catalyst amount (75–200 mg), the concentration of sodium hydroxide (NaOH, 0.25–1 M), initial amount of NaBH4 (75–125 mg) and the reaction temperature (20–60 °C) on hydrogen production performance were examined. The hydrogen yield (100%) and hydrogen production rate (110.87 mL/gcat.min) were determined at the reaction conditions of 5 mL of 0.25 M NaOH, 100 mg NaBH4, 100 mg Ni/TiO2, 60 °C. Reaction order and activation energy were calculated as 0.08 and 25.11 kJ/mol, respectively.  相似文献   

12.
Highly active ReS2 nanocatalysts were prepared by CVD method and characterized by XRD, BET -BJH, Raman spectroscopy, XPS, TPR, NH3-TPD, SEM, and HRTEM techniques. Catalytic activities were used in upgrading heavy crude oil using methane as hydrogen source. The results showed a significant increase in API and decrease in sulfur and nitrogen content of crude oil. RSM technique was used to investigate the interactive effects of temperature (200–400 °C), pressure (20–40 bar) and dosage of nanocatalyst (0.5–2 wt. %) on the performance of HDS reaction. The results represent that the maximum predicted HDS activity (74.375%) was estimated under the optimal conditions (400 °C, 20 bars, and 2 wt % of nanocatalyst). Also, the effect of reaction temperature, pressure and dosage of ReS2 nanorods catalyst on HDN of heavy crude oil was investigated and highest efficiency in the HDN process (93%) occurred at 400 °C and 40 bar using 2 wt % ReS2.  相似文献   

13.
This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49.  相似文献   

14.
Alkaline pretreatment causes the disruptions in the lignin structure and breaks the linkage between lignin and the other carbohydrate fractions in lignocellulosic biomass. The aim of the current study was to investigate the possibility of rye straw hydrolysis with 2% aqueous ammonia for 0–8 h, at 60 °C and 90 °C, under atmospheric pressure. The study investigated how rye straw hydrolysis with aqueous ammonia at low concentration and relatively low temperatures affect such parameters as total and volatile solids (TS & VS), chemical oxygen demand (COD) and pH at low concentration. The experimental results indicated that the concentration of reducing sugars and volatile fatty acids (VFA) in rye straw after 8 h hydrolysis with ammonia were about 1.3 and 5.2 times higher at 60 °C, respectively and 1.8 and 5.2 times higher at 90 °C, respectively compared to samples in which water hydrolysis of rye straw. The percentage content of glucose in the hydrolysates ranged between 17.98% and 50.98% in water and 21.62%–41.75% in 2% aqueous ammonia. SEM and FTIR analysis of rye straw after 8 h hydrolysis confirmed the positive effect of 2% aqueous ammonia on changes in the material structure.  相似文献   

15.
Hydrothermal gasification in subcritical and supercritical water is gaining attention as an attractive option to produce hydrogen from lignocellulosic biomass. However, for process optimization, it is important to understand the fundamental phenomenon involved in hydrothermal gasification of synthetic biomass or biomass model compounds, namely cellulose, hemicellulose and lignin. In this study, the response surface methodology using the Box-Behnken design was applied for the first time to optimize the process parameters during hydrothermal (subcritical and supercritical water) gasification of cellulose. The process parameters investigated include temperature (300–500 °C), reaction time (30–60 min) and feedstock concentration (10–30 wt%). Temperature was found to be the most significant factor that influenced the yields of hydrogen and total gases. Furthermore, negligible interaction was found between lower temperatures and reaction time while the interaction became dominant at higher temperatures. Hydrogen yield remained at about 0.8 mmol/g with an increase in the reaction time from 30 min to 60 min at the temperature range of 300–400 °C. When the temperature was raised to 500 °C, hydrogen yield started to elevate at longer reaction time. Maximum hydrogen yield of 1.95 mmol/g was obtained from supercritical water gasification of cellulose alone at 500 °C with 12.5 wt% feedstock concentration in 60 min. Using these optimal reaction conditions, a comparative evaluation of the gas yields and product distribution of cellulose, hemicellulose (xylose) and lignin was performed. Among the three model compounds, hydrogen yields increased in the order of lignin (0.73 mmol/g) < cellulose (1.95 mmol/g) < xylose (2.26 mmol/g). Based on the gas yields from these model compounds, a possible reaction pathway of model lignocellulosic biomass decomposition in supercritical water was proposed.  相似文献   

16.
In this study, the model food waste was gasified to hydrogen-rich syngas in a batch reactor under supercritical water condition. The model food consisted of rice, chicken, cabbage, and cooking oil. The effects of the main operating parameters including temperature (420–500 °C), residence time (20–60 min) and feedstock concentration (2–10 wt%) were investigated. Under the optimal condition at 500 °C, 2 wt% feedstock and 60 min residence time, the highest H2 yield of 13.34 mol/kg and total gas yield of 28.27 mol/kg were obtained from non-catalytic experiments. In addition, four commercial catalysts namely FeCl3, K2CO3, activated carbon, and KOH were employed to investigate the catalytic effect of additives at the optimal condition. The results showed that the highest hydrogen yield of 20.37 mol/kg with H2 selectivity of 113.19%, and the total gas yield of 38.36 mol/kg were achieved with 5 wt% KOH addition Moreover, the low heating value of gas products from catalytic experiments with KOH increased by 32.21% compared to the non-catalytic experiment. The catalytic performance of the catalysts can be ranked in descending order as KOH > activated carbon > FeCl3 > K2CO3. The supercritical water gasification (SCWG) with KOH addition can be a potential applied technology for food waste treatment with production of hydrogen-rich gases.  相似文献   

17.
Highly performing activated biochar-based catalysts were produced for steam reforming of slow pyrolysis oil. The raw biochar obtained from the slow pyrolysis step was physically activated with CO2 at 700 °C and 1.0 MPa and then employed as support. Preliminary tests on steam reforming of acetic acid at 600 °C showed that using activated biochar-supported catalysts containing 10 wt % Ni and 7 wt % Co led to a conversion above 90% with a relatively slow deactivation rate. When a representative organic model compounds mixture was used as feed, relatively fast deactivation of the catalyst was observed, probably due to the adsorption of heavy organic compounds, which could subsequently react to form not easily desorbable reaction intermediates. However, the dual Ni–Co catalysts exhibited a good performance during the steam reforming of a real slow pyrolysis oil at 750 °C, showing long stability and a constant carbon conversion of 65%.  相似文献   

18.
Hydrogen is expected to play an important role as an energy carrier in the world's future energy systems, as it is environmentally friendly and flexible in use. Hydrolysis of NaBH4 is a promising and effective method, especially for fuel cells and other portable devices, thanks to hydrogen release. Therefore, catalyst research is of great importance in the development of this technology. In this study, Ni/Dolomite catalyst was synthesized by wet impregnation method and used in hydrolysis process. Additionally, the effects of reaction temperature (30–60 °C), nickel content (10–40 wt%), catalyst amount (25–125 mg), NaOH concentration (0.10–0.75 M), and an initial amount of NaBH4 (25–125 mg) on hydrogen yield were investigated. Eventually, the catalyst with 40 wt% Ni content was assigned as the most suitable catalyst, attaining H2 production of 100% with a rate of 88.16 mL H2/gcat.min at 60 °C with 5 mL of 0.25 M NaOH, NaBH4, and Ni/Dolomite catalyst (100 mg).  相似文献   

19.
Supercritical water gasification (SCWG) was adopted to treat oilfield sludge and produce syngas. The effect of temperature (400–450 °C), reaction time (30–90 min) and catalyst addition on syngas production and residual products during SCWG of oilfield sludge was studied. When increasing SCWG temperature from 400 to 450 °C with reaction time of 60 min, the H2 yield and the selectivity of H2 increased significantly from 0.53 mol/kg and 75.53% to 0.98 mol/kg and 78.09%, respectively. It is noteworthy that when the reaction time was too long, CO2 and CO were converted to CH4 with the consumption of H2 via methanation reaction. The addition of Ni/Al2O3 catalyst can substantially promote the production of high-quality syngas from SCWG of oilfield sludge. The H2 yield and its selectivity at 450 °C and 60 min were as high as 1.37 mol/kg and 84.05% with 10Ni/Al catalyst. Moreover, the catalysts with bimetal loading (Fe–Ni, Rb–Ni or Ce–Ni) were found to be beneficial for improving gasification efficiency, H2 yield, and the degradation of organic compounds. Among them, 5 wt% Rb on 10Ni/Al catalyst performed the best catalytic activity for SCWG at 450 °C and 60 min, which had the highest H2 yield of 1.67 mol/kg and selectivity of 86.09%. More than 90% of total organic carbon in sludge was decomposed after the SCWG with all the catalysts. These findings indicated that catalytic SCWG is a promising alternative for efficiently dealing with oilfield sludge.  相似文献   

20.
Corncob liquefaction in supercritical ethanol–water was performed with and without the addition of an alkali catalyst by direct addition or biomass impregnation in a 250-cm3 batch reactor. The effects of temperature, solvent and alkali addition on the biomass conversion level and oil yield were investigated to find the optimum condition. For non-catalytic liquefaction using a 1:1 (v/v) ethanol: water ratio, a maximum oil yield and conversion level of 49.0% and 93.4%, respectively, were obtained at 340 °C. For alkali catalytic liquefaction, the oil yield with KOH addition (57.5%) was higher than that from KOH-impregnated corncob liquefaction (43.3%). The oil from liquefaction with KOH addition had higher heating value (26.7–35.3 MJ kg−1) than the corncob (19.1 MJ kg−1). The dominant components of the obtained oil were found by GC/MS analysis to be aldehyde, ester, phenol derivatives and aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号