首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用粉末冶金法制备了TZM合金。研究了TZM合金的高温拉伸性能、高温断裂韧性以及高温持久性能。结果表明,当试验温度不低于1 100℃时,随着试验温度的提高,TZM合金拉伸强度降低,塑性增加,断裂机制为韧性断裂;试验温度为1 100℃时,随着加载应力的增加,TZM合金持久寿命逐渐降低;同样试验温度下,TZM合金高温断裂韧性良好。TZM合金较现有国产等温锻造模具材料的高温性能良好,可用作1 100℃甚至更高温度下的等温锻造模具材料。  相似文献   

2.
研究了添加Mo(质量分数)为0.02%、0.04%、0.07%、0.11%的82B钢对不同温度下高温拉伸后的组织和性能的影响及Mo对82B高碳钢的强韧化机理。结果表明:(1)200~300℃高温拉伸时,4组试验钢力学性能较好,300℃达到峰值,Mo为0.11%试验组最优,抗拉强度由1 139 MPa增至1 192 MPa,屈服强度为736 MPa,略有降低,伸长率与断面收缩率均有显著提高,分别为22%和72.9%。相较于Mo为0.02%试验钢,虽屈服强度下降约5%,但抗拉强度升高5%,伸长率、断面收缩率大幅增加,且塑性随Mo含量同步提高,随着温度继续升高,由于材料开始软化,各项力学性能均呈下降趋势。(2)Mo为0.02%和0.04%时,显微组织除渗碳体随拉伸温度的提高逐渐增多外,索氏体与珠光体未出现明显变化,与室温相同,当Mo增至0.07%和0.11%时,索氏体、珠光体团逐渐细化且分布均匀。同时,4组试验钢在300℃高温拉伸时出现蓝脆现象,通过断口观察发现,有Al、Si等元素的夹杂物存在,且失效方式为韧性断裂,断口主要可分为剪切唇区和纤维区,剪切唇区的面积随着温度的升高逐渐缩小。  相似文献   

3.
采用Gleeble3500热模拟试验机在温度区间650~1300℃对汽车用1 180 MPa级F/M双相高强钢进行高温热塑性研究,绘制热塑性曲线并对高温拉伸试样断口和显微组织进行观察。试验结果可知:该钢种在试验温度范围内存在1个脆性区,即910~675℃区间,800℃时断面收缩率达到最小值28.76%,在熔点~910℃温度区间内呈现良好塑性,断面收缩率均在60%以上;高温塑性区较窄,第Ⅲ脆性区"布袋"曲线明显且范围较大,该钢种裂纹敏感性高。断口观察可知,950℃和650℃断口均具有典型韧窝特征,属于韧性断裂;800℃断口为沿晶和解理混合型断口,属于典型脆性断裂。650℃断裂主要由先共析铁素体沿原奥氏体晶界析出引起,800℃脆性断裂主要由晶界弱化导致,1 050℃以上高温热强度低,拉伸超过材料所承受的最大强度而发生缩颈断裂。为避免板坯在矫直段产生裂纹,铸坯矫直温度应控制在950℃以上,避开第Ⅲ脆性区(910~675℃)。  相似文献   

4.
李超  尚国明 《河南冶金》2020,28(1):12-14,46
在GLLEEBLE3800热模拟试验机上进行了铌钛复合微合金化钢异型坯的高温拉伸试验,并对断口形貌进行了分析,确定了钢材的脆性温度区,第I脆性区的温度范围为1 300℃至熔点,高温塑性区的温度范围为950~1 300℃,第Ⅲ脆性区的温度范围为700~900℃,高温塑性区为微孔聚集韧性断裂,呈现典型的韧窝结构,在第Ⅲ脆性区为准解理断裂,呈现典型的河流花样结构。  相似文献   

5.
回火温度对Q960级高强结构钢组织及力学性能的影响   总被引:1,自引:0,他引:1  
卢峰  康健  王超  王昭东  王国栋 《钢铁》2012,47(2):92-95
 以屈服强度960MPa级高强调质结构钢板开发为目标,研究了在相同轧制及淬火条件下,回火温度对试验钢显微结构及力学性能的影响。结果表明:随回火温度的升高,试验钢强度下降,韧塑性总体上呈现升高趋势,其中在300~450℃范围内出现一个韧塑性能的恶化区。当回火温度为600℃时,试验钢呈回火索氏体组织,屈服强度为1030MPa,抗拉强度为1080MPa,伸长率为15.9%,-40℃冲击功达144J,各项指标均满足国标GB/T 16270—2009要求。并对试验钢的拉伸力学性能进行了探讨。  相似文献   

6.
细晶W-Cu合金的高温拉伸力学行为与组织演变   总被引:1,自引:1,他引:0  
研究了平均晶粒度在0.5μm以下细晶W-40Cu和W-50Cu合金在200~800℃范围内的高温拉伸力学行为,并结合SEM断口形貌分析了材料在高温状态下的断裂形式及其组织变化规律。结果表明:W-Cu合金拉伸强度随温度升高而迅速降低,其延伸率在室温至400℃温度区间时变化不大;当温度大于400℃时,合金延伸率迅速上升。拉伸断口特征表明:在室温条件下,细晶W-Cu合金的断裂主要包括W晶粒的沿晶断裂与Cu相的延性撕裂;温度在400℃时,Cu相开始软化,但合金材料受铜的"中温脆性"影响而使得材料的断裂延伸率变化不大;当温度达到800℃时,材料的断裂方式主要受Cu相的影响而表现出很好的延性断裂。  相似文献   

7.
曹方  杨卯生  杨树峰  李京社  罗志强  刘威 《钢铁》2022,57(6):132-142
 通过高温拉伸试验研究高氮不锈轴承钢高温断裂行为,探究了170 ℃和470 ℃回火态钢中碳化物分布特征,分析了高温拉伸断裂及组织演变和碳化物分布规律。研究发现,回火温度从170 ℃升高至470 ℃,高氮钢中大于0.8 μm的碳化物明显增加,高氮钢中M23C6强化增量提高了2.59 MPa,固溶强化增量下降了118.82 MPa,470 ℃回火态钢的室温抗拉强度降低、拉伸断口表现为准解理和少量撕裂韧窝;拉伸温度升高至300 ℃,试样断口表现为等轴型韧窝特征,170 ℃和470 ℃回火态试样起裂源断裂碳化物尺寸分别为2.8~3.6 μm和5.5~6.7 μm;450 ℃拉伸断口表现为塑孔韧窝特征,170 ℃和470 ℃回火态试样起裂源断裂碳化物尺寸分别为2.7~3.4 μm和5.8~6.4 μm。拉伸温度从300 ℃提高至450 ℃,钢的固溶强化和位错强化作用减弱,金属原子间结合能下降,碳化物与基体不连续应力分布加剧变形不协调性,碳化物承担较高应力而发生断裂。单纯热作用下钢中0.5~0.8 μm尺寸碳化物数量比例增加;在热力耦合作用下,钢中应力所导致的位错增殖为碳元素扩散提供通道,钢中碳化物在晶界和位错线上形核析出0.2~0.8 μm碳化物。裂纹沿着与拉伸方向45°角的最大剪力方向快速扩展而断裂,最终形成锯齿状的断口,小尺寸碳化物增多阻碍位错滑移导致塑性降低;钢中大尺寸碳化物不均匀分布在碳化物间形成大变形塑孔而增加钢的塑性。  相似文献   

8.
为研究易切削模具钢高温热塑性,利用热膨胀仪分析了该材料在不同冷速下的微观组织转变规律及相变点,并绘制了CCT曲线;利用Gleeble-3800试验机模拟研究材料高温拉伸断裂行为,结合断口形貌分析材料热塑性规律。试验结果表明,该材料高温热塑性存在明显的3个区域,分别为第3脆性区、韧性区和第1脆性区。试验钢在950~1 150 ℃范围内变形性能最优,为高温塑性区;950 ℃以下为第3脆性区,断口形貌为韧窝和解理,且随着变形温度的升高,韧窝数量增多,伸长率增加,直至950 ℃拉伸后断口形貌基本上全为韧窝;1 300 ℃及以上为第1脆性区,伸长率随变形温度升高而下降。提高冷却速率,会增加冷却过程中奥氏体内部的热应力,导致在相同温度下变形时伸长率较低冷却速率时小。  相似文献   

9.
采用Gleeble-3500热模拟试验机对09CrCuSb钢连铸坯的高温力学性能进行测试,得到其在650~1 300℃的应力—应变曲线、高温强度、热塑性和塑性模量的变化规律。结果表明:应力—应变曲线中,应力峰值随测试温度升高而减小,当测试温度高于700℃时,应力—应变曲线中出现应力平台现象;连铸坯试样的高温强度较差,随温度升高,其高温强度整体呈下降趋势;在2.4×10~(-3) s~(-1)应变速率下,存在两个明显的脆性温度区间,第一脆性温度区间为1 200℃~熔点,第三脆性温度区间为700~800℃,在825~1 250℃时09CrCuSb钢连铸坯热塑性较好,断面收缩率均大于80%;连铸坯试样的高温塑性模量在675~1 300℃时小于660.099 MPa。  相似文献   

10.
张宁飞  崔志强  王婕  侯清宇  黄贞益 《钢铁》2022,57(10):170-177
 为了分析硅镍合金化奥氏体基低密度钢在中温环境下的拉伸变形行为,采用Instron电子拉力试验机对Fe-28.64Mn-8.99Al-1.68Si-1.39Ni-1.0C(Mn29Al9Si2Ni,质量分数/%)低密度钢在23~300 ℃下进行了温拉伸试验,研究了该钢的温拉伸力学行为,并采用SEM、TEM和热力学计算对该钢的强韧化机制进行了研究。结果表明,随着应变的增加,温拉伸应力-应变曲线主要包括弹性变形、均匀塑性变形和断裂等几个过程,没有明显的屈服现象。随着温度的提高,该钢的强度逐渐降低,塑性(断后伸长率)先增加后减小再升高,于200 ℃时出现塑性低谷,此时该钢的应力-应变曲线和应变硬化率曲线均具有明显的锯齿状特征,应变硬化率随应变的增加变化不大。而该钢在其他温度下的应力-应变曲线和应变硬化率曲线没有发现明显的“锯齿状”特征,应变硬化率随应变的增加而平缓下降。试验钢在23~300 ℃下的主要强韧化机制为κ-碳化物强化、应变强化、孪生诱发塑性和动态应变时效强化。较低温度下位错可动性较差对孪生诱发的促进作用、镍元素和硅元素对孪生的抑制作用、较高温度下孪生现象的减弱和温度对动态应变时效的促进或抑制作用等使得试验钢在23、100和300 ℃时存在明显的孪生诱发塑性,而在200 ℃时存在明显的动态应变时效强化的主要原因。动态应变时效强化是该钢在200 ℃时出现塑性低谷的主要原因。  相似文献   

11.
利用Gleeble-3800热模拟试验机研究了20CrMnTi钢连铸坯的高温热塑性,结合扫描电子显微镜和金相显微镜观察了拉伸断口形貌及其附近金相组织,分析了试验钢断裂机理。结果表明:在600~1 300℃温度区间内,试验钢抗拉强度逐渐下降,断面收缩率先下降后升高再降低;在900℃时断面收缩率达到最小值48%,断口形貌呈冰糖状,为典型的沿晶脆性断裂,断口附近组织为贝氏体和部分铁素体;断面收缩率在1 150℃时达到最大值82.36%,断口韧窝较为集中,为典型的韧性断裂,断口附近组织为均匀的贝氏体。试验钢在600~1 300℃范围存在1个脆性温度区间,即750~950℃第Ⅲ脆性区间;塑性区间为600~700℃和1 000~1 300℃。第Ⅲ脆性区间形成原因是由于铁素体沿晶界析出,削弱了晶界结合力,为裂纹的产生和扩展提供了条件,导致材料塑性恶化。为减少裂纹的发生率,在连铸生产中应避开第Ⅲ脆性区间,即控制矫直温度高于950℃或者低于750℃。  相似文献   

12.
利用Gleeble-3800热模拟实验机研究了1Cr18Ni9Ti奥氏体不锈钢从糊状区以不同速率冷却到不同温度时的高温力学性能.研究表明,零强度温度(Zero Strength Temperature)和零塑性温度(Zero Ductility Temperature)的温差小于20 ℃,大的冷却速率可以改善1Cr18Ni9Ti不锈钢在1300 ℃以上时的热塑性.凝固收缩和金属液的补缩作用对1Cr18Ni9Ti钢的高温力学性能有很大影响,随着固相率的升高,材料在拉伸破坏时由沿晶断裂转变为穿晶断裂方式.  相似文献   

13.
采用Gleeble-1500热模拟试验机,对第三代汽车钢(TG钢)在不同的变形温度下进行了热拉伸试验,研究其热塑性的变化运用光学显微镜和扫描电镜分析了实验钢热变形的断口形貌及断裂机理.发现实验钢的强度随温度的升高而降低,热塑性曲线分为第Ⅰ脆性区、高温塑性区和第Ⅲ脆性区三个区域,其中第Ⅲ脆性区存在两个塑性极小值.在1300~800℃时实验钢的组织为奥氏体,断裂方式为连孔延性断裂,动态再结晶使韧窝分离前发生了较大的塑性变形,断口为大而深的韧窝;750℃时实验钢沿奥氏体晶界析出铁素体,断裂方式为界面断裂,断口既存在着铁素体内聚失效形成的小的孔洞,也存在由于裂纹沿奥氏体晶界扩展形成的石块状形貌;650℃由于出现了铁素体的准解理,实验钢的塑性下降,热塑性曲线再次出现极小值.   相似文献   

14.
为探索耐腐蚀钢在高温条件下的强度及塑性,本文研究了S355J0WP耐候钢在250℃及以上高温条件下的拉伸性能。试验结果表明:随着温度的升高,S355J0WP耐候钢的强度发生较大变化,具体表现为强度降低。但屈服强度和抗拉强度下降速率有所不同,屈服强度的下降速率快于抗拉强度。断后伸长率随着温度升高无明显变化,但当高温拉伸温度达到500℃时,断后伸长率出现一定幅度升高。随着温度的升高,圆拱形应力-应变曲线坡度逐渐变大。应力—应变曲线形状的变化主要是由于S355J0WP颈缩后的变形量总体上随着温度的提高而增大。  相似文献   

15.
摘要:采用Gleeble-3500热模拟试验机和金相法测试了不同应变速率下建筑用钢Q460连铸坯的高温力学性能,获得了600~1200℃范围内Q460连铸坯的高温强度、热塑性和最终室温组织随拉伸温度和应变速率的变化规律。结果表明,当Q460连铸坯在较高的应变速率(10s-1)下进行高温拉伸时,试样的断面收缩率随着拉伸温度的升高而升高,没有出现高温脆性区;在较低的应变速率(10-3s-1)下进行高温拉伸时,试样的断面收缩率出现了2个脆性区,第1个在1100℃至熔点温度,第2个脆性区间在700℃附近。总体来说,实验钢种的高温断面收缩率均大于65%,表明建筑用钢Q460连铸坯具有较好的高温热塑性。此外,同一应变速率下,Q460连铸坯的抗拉强度随着拉伸温度的升高而降低,而伸长率随着拉伸温度的升高而升高。  相似文献   

16.
高温氧化对钛合金超塑性能的影响   总被引:5,自引:0,他引:5  
研究了Ti-6Al-4V合金在800℃、850℃和900℃高温条件下进行拉伸试验时空气氧化对超塑性能的影响。通过光学显微镜、扫描电镜和X射线衍射分析了该钛合金氧化层的微观形貌和成分组成,并研究其在高温拉伸下的氧化机理。结果表明,高温氧化导致该合金在高温拉伸过程中表面产生氧化层,而在拉伸应力作用下氧化层断裂并向基体扩展,从而严重降低了Ti-6Al-4V合金的超塑性,但不会影响其抗拉强度及屈服强度。  相似文献   

17.
通过在Gleeble—1500热模拟试验机上进行热拉伸试验,研究了16MnCr5齿轮钢在高温下形变断裂的行为与机制。结果如下:在奥氏体低温区(750~1000℃),由于晶界滑移而损害了塑性;在奥氏体高温区(1050~1300℃),动态再结晶的发生使得塑性显著改善;1350℃以上温度晶界发生过熔导致沿晶脆性断裂;700℃时在奥氏体晶界处形成形变诱导铁素体膜,导致沿晶塑性断裂  相似文献   

18.
邹航  刘曼  徐光 《钢铁》2021,56(9):144-150
 为了研究轧后不同冷却条件对高强低碳贝氏体钢组织和性能的影响,采用热模拟试验、扫描电镜、透射电镜和拉伸试验等手段,阐明不同冷却条件下高强低碳贝氏体钢的组织和性能变化规律。结果表明,在终冷温度为510 ℃时,组织以粒状贝氏体为主,终冷温度为450 ℃时以板条状贝氏体为主,前者组织中具有更多岛状马氏体;随着冷却速率提高,粒状贝氏体和板条状贝氏体尺寸细化,岛状马氏体减少。此外,不同冷却速率下,较低的终冷温度均具有更高的相变速率,冷却速率为50 ℃/s时,贝氏体相变速率最大。另外,终冷温度较高时,试验钢呈现出更好的塑性,强度随冷速变化较小;终冷温度较低时,试验钢呈现出更高的强度,但塑性较低,冷却速率对强度有较大的影响。  相似文献   

19.
采用万能拉伸试验机、金相显微镜及扫描电镜对62Be-38Al铍铝合金在-100~500℃下的高、低温力学性能及断裂机制进行探究。结果表明,铍铝合金的抗拉强度与屈服强度随温度的升高而降低,延伸率则呈现先升再降的变化趋势,在300℃时达到最大值。同时,随着测试温度的上升,铍铝两相的界面结合强度逐渐低于铍颗粒的解理断裂强度,断口组织中相界面断裂增加,铍解理面减少。当温度升至500℃时,铝相软化,铍铝相界面的结合强度大幅降低,伴随着合金强度塑性的急剧下降,其断口呈沿晶断裂。另外,随温度的升高,合金的形变强化指数单调下降,-150℃时为0.22,400℃时为0.08。  相似文献   

20.
在Gleeble-3500热模拟试验机上进行冷轧超高强度双相钢的连续退火工艺研究,利用光学显微镜、扫描电镜、透射电镜和拉伸试验研究了连续退火过程中各个参数对1000MPa级冷轧双相钢组织性能的影响.结果表明:试验用钢在退火温度800℃下保温80s,可以得到抗拉强度为1030MPa、延伸率为14%超高强双相钢;随着退火温度的升高,屈服强度和抗拉强度降低.当退火温度为830℃时,显微组织中粒状的非马氏体组织明显增多.过时效温度低于300℃时,屈服强度和抗拉强度变化不大;当过时效温度超过300℃时,抗拉强度急剧下降,屈服强度先降低后升高,在过时效温度为360℃时开始出现屈服平台.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号