首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
《应用化工》2022,(1):143-146
研究了碳毡电极电芬顿对偶氮类染料废水甲基橙的降解,并研究了pH、电流、氧气流量等实验条件对废水降解的影响。结果表明,在pH=3、电流为25 mA、氧流量为100 mL/min条件下,初始浓度为100 mg/L的甲基橙的脱色率达95%左右;与脱色相比,染料矿化需要更长的处理时间,处理180 min,矿化率达到40%左右。  相似文献   

2.
《应用化工》2020,(1):143-146
研究了碳毡电极电芬顿对偶氮类染料废水甲基橙的降解,并研究了pH、电流、氧气流量等实验条件对废水降解的影响。结果表明,在pH=3、电流为25 mA、氧流量为100 mL/min条件下,初始浓度为100 mg/L的甲基橙的脱色率达95%左右;与脱色相比,染料矿化需要更长的处理时间,处理180 min,矿化率达到40%左右。  相似文献   

3.
为了进一步探讨Fenton法对某些难降解有机物的降解效果,研究影响降解的诸多因素,以甲基橙模拟染料废水为研究对象,以色度和COD去除率为检测指标,研究了Fenton反应中pH值、H2O2浓度、Fe2+离子浓度、反应时间、温度对甲基橙模拟染料废水脱色率及COD去除率的影响规律.结果表明:Fenten试剂可有效地去除甲基橙模拟染料废水中的色度和COD.染料浓度为200mg/L时,在pH=4、20℃、H2O2=(浓度为30%)投量为0.6mL/L、硫酸亚铁投量为200mg/L时,反应60min,甲基橙模拟染料废水的色度去除率可以达到99.66%,COD的去除率可达88%.  相似文献   

4.
杨红晓  杨继臻 《广州化工》2012,40(7):76-78,98
以石墨为阳极、活性炭纤维(ACF)为阴极,电Fenton法氧化降解甲基橙溶液。结果表明,在甲基橙溶液浓度为4 mmol/L、pH值为3、电压为8 V、硫酸亚铁的浓度为0.2 mmol/L、反应时间为60 min时脱色率可达到98.12%,并且甲基橙氧化降解遵循一级反应动力学。  相似文献   

5.
以钛白副产硫酸亚铁作为光芬顿的铁源和催化剂,研究了钛白副产硫酸亚铁-过氧化氢体系在紫外光照射条件下对甲基橙的氧化分解作用,并分析了温度、过氧化氢浓度、波长、钛白副产硫酸亚铁浓度和纯硫酸亚铁浓度等因素对甲基橙脱色率的影响。实验结果表明:当温度为35 ℃、过氧化氢浓度为6.4 mmol/L、副产硫酸亚铁浓度为1.0 mmol/L时,在395 nm波长下甲基橙的脱色速率最快,达到100%。在相同条件下,钛白副产硫酸亚铁对甲基橙的脱色效果优于纯硫酸亚铁的效果。因此,以钛白副产硫酸亚铁作为光芬顿催化剂,并以此来催化降解甲基橙,提高了钛白副产硫酸亚铁的资源利用率,拓宽了其资源化利用的途径。  相似文献   

6.
采用多电极介质阻挡放电低温等离子体处理印染废水进行中试研究。考察容积为15 L的反应器在不同的输入电压、脉冲频率、溶液初始浓度、气体流速等条件下对甲基橙溶液的降解效果。结果表明,降解效果随输入功率电压的增加而先增加后降低,且在100 V时降解效果最佳,50 mg/L的甲基橙溶液20 min的脱色效率为98.08%,200 mg/L的甲基橙溶液60 min的脱色效率为99.12%;对50 mg/L的甲基橙溶液20 min COD的降解率为29%,连续降解60 min COD的降解率达57%。同时,气体流速也是工业应用中需要重视的影响因素之一。  相似文献   

7.
在自制的电化学反应器中,进行了隔膜体系阴阳极共同作用电化学法降解模拟染料废水中甲基橙的试验研究,考察了电压、曝气速度、电极板间距、电解质投加量等因素对甲基橙脱色率的影响。结果表明,隔膜体系阴阳极共同作用电化学法可有效处理废水中的甲基橙。在最佳脱色工艺条件下,阴极室中甲基橙脱色率达到90.23%,阳极室中甲基橙脱色率达到99.60%。通过能耗分析得到阳、阴极室内能耗与脱色率的关系式。  相似文献   

8.
以甲基橙模拟废水为研究对象,用正交实验考察了影响复频超声降解甲基橙的因素。结果表明,正交因子影响权重:复频超声功率>超声作用时间>甲基橙初始浓度。最佳工艺条件:复频超声功率为150 W,超声作用时间为90 min,甲基橙初始质量浓度为10 mg/L,在此条件下,溶液脱色率为89.6%;当pH=2时,脱色率可达98%;添加CaCl2,脱色率和COD去除率均超过96%。总之,降低pH,提高温度,添加CaCl2均能显著提高复频超声降解甲基橙废水的效果。  相似文献   

9.
采用玻璃碳作为阴极,Ti/RuO_2作为阳极,开展了电芬顿降解孔雀石绿染料废水的研究。研究了电解质浓度、氧气曝气量、电流、pH等条件对玻璃碳阴极电芬顿降解孔雀石绿的影响。结果表明:在pH=3.0、电解质浓度0.1 mol/L、氧气曝气量100 mL/min、电流强度30 mA条件下,初始浓度为200 mg/L的孔雀石绿经过60 min处理,降解率达到99.11%。  相似文献   

10.
采用玻璃碳作为阴极,Ti/RuO_2作为阳极,开展了电芬顿降解孔雀石绿染料废水的研究。研究了电解质浓度、氧气曝气量、电流、pH等条件对玻璃碳阴极电芬顿降解孔雀石绿的影响。结果表明:在pH=3.0、电解质浓度0.1 mol/L、氧气曝气量100 mL/min、电流强度30 mA条件下,初始浓度为200 mg/L的孔雀石绿经过60 min处理,降解率达到99.11%。  相似文献   

11.
以阴极负载活性炭纤维电解法降解甲基橙染料废水,并对比了电解法和生物膜电极法对甲基橙染料废水的处理效果,讨论了处理时间、初始浓度及电压对甲基橙染料废水脱色率的影响。结果表明:甲基橙染料废水的脱色率随处理时间的延长先增大后趋于平衡,阴极负载活性炭纤维电解法最先达到平衡且处理1 d脱色率可达90%以上,生物膜电极法在处理3 d达到平衡,电解法在处理4 d达到平衡;生物膜电极法处理时,甲基橙染料废水的脱色率随初始浓度先增大后减小,最佳初始浓度为200 mg/L,电解法处理时,脱色率先减小后增大后减小,最佳初始浓度为20 mg/L,阴极负载活性炭纤维电解法处理时,脱色率先增大后减小,最佳初始浓度为60 mg/L;最佳电压均为1.5 V。生物膜电极法和阴极负载活性炭纤维电解法处理甲基橙染料废水的效果优于电解法。  相似文献   

12.
沈拥军  苏平  欧昌进 《广东化工》2011,38(11):81-83
文章采用臭氧/活性炭组合工艺对甲基红印染废水进行降解试验,考察了甲基红废水的pH、活性炭投加量、温度和臭氧流量等参数对印染废水色度和CODCr去除率的影响,确定了臭氧/活性炭组合工艺降解甲基红印染废水的最佳工艺条件。结果表明,在pH为3.5,温度为25℃,活性炭投加量为120 mg/L,臭氧流量为0.83 L/min,初始浓度为10 mg/L的条件下降解10 min,臭氧/活性炭组合工艺对甲基红废水的脱色率达到97.4%,CODCr去除率达到85.2%。该组合工艺能有效地去除印染废水的色度和CODCr,使出水水质达到处理标准。  相似文献   

13.
李晓凤  马荣华 《广州化工》2013,(22):45-46,51
以PW11Ti/PANI/TiO2为光催化剂,在太阳光照射下,研究了模拟染料废水甲基橙溶液的光催化降解的反应,讨论了甲基橙溶液的酸度、溶液的初始浓度以及催化剂投加量等对甲基橙溶液脱色效果的影响。结果表明:催化剂加入量为10mg,甲基橙的初始浓度为20mg/L,pH=4,脱色率达到85.62%。  相似文献   

14.
电Fenton方法在甲基橙染料废水中的试验研究   总被引:1,自引:0,他引:1  
考察了均相EF-Feox法(牺牲阳极法)、均相EF-Fere法和非均相电Fenton(Fe2(MoO4)3-kaolin-450)法3种电Fenton法对甲基橙偶氮染料废水的降解效果,对比了各反应体系的优缺点。与均相EF-Feox体系和均相EF-Fere体系相比,非均相电Fenton-Fe2(MoO4)3-kaolin-450体系对甲基橙的降解效果最好。当电流密度为65 mA/cm2、Fe2(MoO4)3-kaolin-450催化剂的加入量为6.6 g/L、初始pH为4.34、50 mmol/L的Na2SO4作为电解质、甲基橙的初始质量浓度为100 mg/L,甲基橙的COD去除率和脱色率分别可以达到92.48%和99.3%。将此方法应用于铬蓝黑R、橙黄Ⅱ、以及吩噻嗪类物质亚甲基蓝等染料废水体系中,同样条件下电解10 min,3者的脱色率均可以达到93%以上,说明此方法在染料废水处理中具有普遍适用性。  相似文献   

15.
不锈钢基PbO2电极电催化氧化降解甲基橙性能的研究   总被引:1,自引:1,他引:0  
本研究以自制的不锈钢基PbO2电极对25mg·L^-1的甲基橙溶液进行电催化氧化降解。考察了电流密度、支持电解质浓度、溶液pH值、温度等因素对甲基橙脱色率的影响,确定了电催化氧化甲基橙的最佳反应条件,即电流密度为50mA/cm^2,支持电解质Na2SO4的浓度为0.04mol·L^-1,降解20min后,甲基橙脱色率可达到90%以上。本研究还对几种不同印染废水进行了电催化氧化降解,结果表明,不锈钢基PbO2电极对不同的印染废水均有较好的脱色效果。  相似文献   

16.
TiO_2/ZnO复合膜-H_2O_2光催化体系对甲基橙废水的降解脱色   总被引:1,自引:1,他引:0  
采用仿生合成法制备TiO2/ZnO复合膜光催化剂,并以氙灯模拟日光光源,甲基橙为模型反应物,研究了催化剂投加量、H2O2投加量、溶液初始浓度、pH值和催化剂重复使用等因素对H2O2协同光解脱色甲基橙效率的影响。结果表明,当pH值为6,催化剂投加量为0.7 g/L,H2O2投加量为3.90 mmol/L时,对初始质量浓度为15 mg/L的甲基橙废水,130 min内脱色率达100%。酸性对光催化反应有促进作用,碱性对反应有抑制作用。催化剂重复使用5次后,处理130 min对甲基橙染料废水的脱色率仍可超过70%。  相似文献   

17.
以甲基橙为目标物,考察紫外-Fenton法对水中甲基橙的脱色能力。系统研究了甲基橙的初始浓度、H2O2用量、Fe2+用量、pH等对甲基紫脱色率的影响和达到最大脱色率的最佳条件。结果表明:甲基橙的初始浓度20 mg/L,pH为3.0,H2O2用量20 mg/L,Fe2+的用量为40 mg/L,紫外-Fenton法对甲基橙的脱色率可达90.00%。  相似文献   

18.
采用生物法合成Pd/C催化剂,制备成bio-Pd/C气体扩散电极降解甲基橙模拟废水,考察了电流大小、pH、曝气条件对甲基橙去除效果的影响,探讨了bio-Pd/C气体扩散体系下的电催化降解机制。结果表明,所制备的催化剂中Pd以无定形态存在并高度分散在生物炭内部连通的孔隙中,形状比较规则,粒径为10~15 nm。反应30 min后,bio-Pd/C气体扩散体系对甲基橙的去除率达到99%、对TOC的去除率达到53%。增大电流、低pH、增加曝气均有利于甲基橙的降解,在bio-Pd/C气体扩散体系中掺杂Pd催化剂可以强化甲基橙的降解。  相似文献   

19.
研究了微波、膨胀石墨和Fenton协同催化氧化法处理甲基橙(MO)废水工艺,探讨了各种因素对废水脱色效果的影响。结果表明,微波-膨胀石墨-Fenton试剂氧化体系产生了明显的协同效应,能高效快速降解废水中的MO。在优化工艺条件下,即在50 mL初始pH为4、MO质量浓度为450 mg/L的废水中,膨胀石墨用量1 g/L、微波辐射功率259 W、微波辐射9 min、双氧水用量为3 mL/L、n(H2O2):n(Fe2+)=40:1条件下,甲基橙脱色率达到了99.8%。  相似文献   

20.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号