首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
针对磨齿机在磨削加工时,电主轴存在热致误差等问题,提出一种基于思维进化算法(MEA)优化BP神经网络建立磨齿机电主轴热误差预测模型的方法。通过测量磨齿机电主轴在加工过程中的温升与位移情况,利用思维进化算法优化BP神经网络算法在MATLAB软件中建立预测模型,并与未经过算法优化的BP神经网络建立的模型进行了对比。在电主轴X向热误差预测实验中,未经过算法优化的BP模型最低补偿率为84.85%,而经过思维进化算法优化BP模型最低补偿率为95.29%。结果表明:经过思维进化算法优化BP神经网络建立的热误差模型,在拟合和预测精度上要优于未经过算法优化的BP神经网络热误差模型。  相似文献   

2.
为解决某加工中心电主轴的热误差补偿问题,建立预测精度高、鲁棒性强的热误差补偿模型。搭建实验台,利用美国雄狮回转误差分析仪采集电主轴的温度场和热误差数据。介绍麻雀搜索算法(SSA)原理、具体优化流程。采用SSA优化BP神经网络的权值和阈值,建立SSA-BP神经网络预测模型。与之前建立的BP神经网络预测模型相比,优化后预测效果更优,为电主轴热误差建模提供新的思路。  相似文献   

3.
针对机床电主轴在高速运转时内部发热造成的热误差问题,对比BP、RBF神经网络方法,采用一种基于GMDH神经网络的电主轴热误差建模方法。以某型号高速数控机床电主轴为研究对象进行热误差实验,通过利用温度传感器和电涡流位移传感器分别采集主轴温度和轴向热位移数据,运用数据处理群集方法(GMDH)建立主轴轴向热误差预测模型。经过数据对比表明:该方法较传统的神经网络方法具有学习速度快、获得全局最优解、泛化性能好、拟合预测精度高等优点。  相似文献   

4.
针对机床热误差补偿技术中预测模型建立的问题,综合多元线性回归及BP神经网络的优点,提出一种机床热误差建模新方法。由不同样本数据建立若干多元线性回归模型,依据统计学理论筛选出预测精度及鲁棒性高的回归模型,预处理后将其结果输入到BP神经网络中进行非线性拟合建模,在不断调节网络权值及对神经网络训练的基础上,最终建立热误差补偿模型。在卧式加工中心上进行试验验证,主轴Z向最大热误差从17.895μm减小到1.654μm。  相似文献   

5.
热误差是影响数控机床加工精度的主因,为提高数控机床热误差模型的预测精度,提出了基于改进粒子群优化BP神经网络的数控机床热误差建模预测方法。针对BP易陷入局部最优、收敛速度慢,在标准粒子群算法的基础上,改进粒子的速度与位置更新策略,在此基础上优化BP神经网络的阈值和权值,并建立数控机床热误差预测模型;借助于MATLAB完成仿真实验,结果表明,与标准的BP神经网络和支持向量机相比,基于改进粒子群优化BP神经网络的数控机床热误差预测模型精度高、泛化能力强。  相似文献   

6.
为了降低机床主轴运行产生的热误差,建立混合算法优化BP神经网络预测模型,通过实验验证预测精度。分析模拟退火算法和粒子群算法的不足,采用模拟退火算法耦合粒子群算法,给出混合算法寻优步骤。引用BP神经网络结构,构造机床主轴热误差预测模型,采用混合算法优化BP神经网络预测模型。采用实验验证主轴热误差预测精度,并与优化前进行比较和分析。结果显示:采用混合算法优化后的BP神经网络预测模型,其Y轴方向产生的最大误差值从7.3μm降低到2.3μm;而Z轴方向产生的最大误差值从7.5μm降低到2.6μm。同时,机床主轴整体误差波动幅度较小。采用混合算法优化BP神经网络预测模型,用于机床主轴热误差在线补偿,提高了加工精度。  相似文献   

7.
热误差是影响高端数控机床精度的主要因素,主轴系统受热变形影响尤其显著。首先,在分析电主轴热误差因素的基础上,基于齐次变换矩阵建立电主轴热误差综合描述;进而综合采用接触式、非接触式温度场及热变形测量技术,构建主轴热误差测量方案,并结合相关系数法设置关键测温点;基于热误差描述模型及检测数据,建立电主轴热误差模型,成功开发电主轴热误差补偿系统,将加工中心运行过程中的热误差控制在3μm以内,证明了系统的有效性。  相似文献   

8.
在精密及超精密加工过程中,数控机床热误差是影响加工精度的一项重要误差源,最经济和有效地减少热误差的方法是热误差补偿技术。针对热误差补偿预测模型的预测精度问题,提出一种非线性组合预测模型。该预测模型利用灰色关联度方法对单项预测模型进行筛选,对筛选出的单项预测模型基于不同优化准则进行线性组合,通过广义回归神经网络对该线性组合模型进行非线性组合,得到非线性组合预测模型。误差预测结果表明:对比典型的BP神经网络预测模型,非线性组合预测模型的预测精度更高,最大误差由4.78μm减小到0.7μm。  相似文献   

9.
为减小热误差对数控机床加工精度的影响,提出基于GA-BP神经网络的机床热误差优化建模方法。阐述遗传算法(GA)和BP神经网络算法,介绍GA-BP神经网络模型的具体步骤,建立BP神经网络热误差预测模型和GA-BP网络热误差优化模型。运用MATLAB软件对两种模型进行实验仿真,结果表明:GA-BP神经网络的数控机床热误差优化建模方法具有建模时间短、预测精度高、收敛速度快等优点。  相似文献   

10.
针对五轴加工中心直驱回转工作台热变形导致加工误差的问题,以耳轴式回转工作台虚拟样机为对象进行热变形补偿研究。基于R型聚类分析与热误差敏感度理论对温度测点进行优化选取,在降低测点数的同时保留了温升与热变形的对应关系信息。借助MATLAB建立BP神经网络误差预测模型,通过采集工作台特定测点的温度预测台面中心点的热变形位移量,得到误差拟合曲线与补偿残差。优化网络结构,得到最佳的隐含层节点数,提高模型的预测精度。研究结果可为五轴加工中心热变形误差补偿与BP网络的优化设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号