首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《国际聚合物材料杂志》2012,61(13):1021-1034
In the present study, Spartium junceum (SJ) fibers were chemically treated with different concentrations of two coupling agents, silane N [-3 Trimethoxysilyl propyl] ethylene diamine (Z-6020) and stearic acid, in order to improve the mechanical properties of polypropylene/Spartium junceum fibers (PP/SJ) composites. The chemical modification efficiency was verified by FTIR analysis, which showed the appearance of bands around 1260 and 1100 cm?1 attributed to asymmetric stretching of Si-O-Si linkage and Si-O-Cellulose for (Z-6020) modified SJ fibers. The mechanical properties of the composites prepared from chemically treated Spartium junceum fibers are found to increase substantially compared to those with untreated fibers.  相似文献   

2.
This paper presents the influence of Spartium junceum (SJ) fiber content, surface treatment and temperature on the water uptake of polypropylene/Spartium junceum fiber (PP/SJ) composites. Composites specimens were dried at 70°C to reach a constant weight and then were submerged in distilled water at different temperatures, 23°C and 85°C. Water uptake of PP/SJ fiber composites was found to increase with fiber content. Impact strength properties are dramatically affected by the water absorption. Water-saturated samples present poor impact strength. The SEM micrograph of Spartium junceum fiber untreated and treated with silane (Z-6020) illustrate the reduction of roughness via surface treatment of fiber.  相似文献   

3.
Wollastonite reinforced polypropylene (PP/CaSiO3) composites were prepared by melt extrusion. A silane coupling agent and a maleic anhydride grafted PP (PP‐g‐MA) were used to increase the interfacial adhesion between the filler and the matrix. The increased adhesion observed by scanning electron microscopy (SEM) resulted in improved mechanical properties. A model was applied to describe the relationship between the interfacial adhesion and tensile properties of PP/CaSiO3 composites. There is stronger interfacial adhesion between silane‐treated CaSiO3 and polymer matrix containing PP‐g‐MA as a modifier. Results of dynamic mechanical thermal analysis (DMTA) showed that stronger interfacial adhesion led to higher storage modulus. The influence of CaSiO3 particles on the crystallization of PP was studied by using differential scanning calorimetry (DSC). The introduction of CaSiO3 particles does not affect the crystallization temperature and crystallinity of PP matrix significantly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Flame retardant polypropylene (PP) composites were prepared by combining random polypropylene with uncoated and surface‐treated forms of magnesium hydroxide filler and elastomeric modifiers, with and without maleic anhydride functionalization. Four types of magnesium hydroxide (MDH) with different surface treatments were compounded at amounts up to 60% by weight to PP/polyolefin elastomer (POE) matrix resin to obtain a series of composites. The tensile strength and elongation at break were measured. MDH coated with polymeric material was found to give a high elongation at break value compared with the values obtained with uncoated and vinyl silane and amino silane coated MDH. Two types of POE, i.e., neat and maleic anhydride grafted POE (POEgMA), were used to investigate the stress whitening of composites in bending deformation. POEgMA used composites showed no stress whitening while neat POE used composites showed whitening when bended. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2311–2318, 2005  相似文献   

5.
Polypropylene hybrid composites reinforced with short glass fiber (SGF) and toughened with styrene–ethylene butylenes–styrene (SEBS) elastomer were prepared using extrusion and injection‐molding techniques. Moreover, hybrids compatibilized with SEBS‐grafted maleic anhydride (SEBS‐g‐MA) and hybrid compatibilized with PP grafted with maleic anhydride (PP‐g‐MA) were also fabricated. The matrix of the latter hybrid was designated as mPP and consisted of 95% PP and 5% PP‐g‐MA. Tensile dilatometry was carried out to characterize the fracture mechanisms of hybrid composites. Dilatometric responses showed that the elastic deformation was the dominant deformation mechanism for the SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrids. However, cavitation deformation prevailed over shearing deformation for both hybrids at the higher strain regime. The cavitation strain resulted from the debonding of glass fibers and from the crazing of the matrix in the SGF/SEBS/PP hybrid. In contrast, the cavitation was caused by the debonding of SEBS particles from the matrix of the SGF/SEBS‐g‐MA/PP hybrid. The use of PP‐g‐MA resulting in elastic deformation was the main mode of deformation in the low‐strain region for the SGF/SEBS/mPP and SEBS/SEBS‐g‐MA/mPP hybrids; thereafter, shearing appeared to dominate at the higher strain regime. This was attributed to the MA functional group improving the bonding between the SGF and PP. The correlation between fracture morphology and dilatometric responses also is presented in the article. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 441–451, 2003  相似文献   

6.
To investigate the effect of interfacial interaction on the crystallization and mechanical properties of polypropylene (PP)/nano‐CaCO3 composites, three kinds of compatibilizers [PP grafted with maleic anhydride (PP‐g‐MA), ethylene–octene copolymer grafted with MA (POE‐g‐MA), and ethylene–vinyl acetate copolymer grafted with MA (EVA‐g‐MA)] with the same polar groups (MA) but different backbones were used as compatibilizers to obtain various interfacial interactions among nano‐CaCO3, compatibilizer, and PP. The results indicated that compatibilizers encapsulated nano‐CaCO3 particles, forming a core–shell structure, and two interfaces were obtained in the compatibilized composites: interface between PP and compatibilizer and interface between compatibilizer and nano‐CaCO3 particles. The crystallization and mechanical properties of PP/nano‐CaCO3 composites were dependent on the interfacial interactions of these two interfaces, especially the interfacial interaction between PP and compatibilizer. The good compatibility between PP chain in PP‐g‐MA and PP matrix improved the dispersion of nano‐CaCO3 particles, favored the nucleation effect of nano‐CaCO3, increased the tensile strength and modulus, but reduced the ductility and impact strength of composites. The partial compatibility between POE in POE‐g‐MA and PP matrix had little effect on crystallization and mechanical properties of PP/nano‐CaCO3 composites. The poor compatibility between EVA in EVA‐g‐MA and PP matrix retarded the nucleation effect of nano‐CaCO3, and reduced the tensile strength, modulus, and impact strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
This article deals with the feasibility of using recycled corrugated paper board (rPF) as the reinforcing material for recycled plastics. The composites of recycled polypropylene (rPP) and rPF were prepared by extrusion compounding and injection molding, and the rPP/rPF composites compatibilized by maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted ethylene‐1‐octene copolymer (POE‐g‐MA), and maleic anhydride grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA) were also prepared. The crystallization and melting behavior, mechanical properties, thermal stability, and morphology of these composites were studied. The results indicated that rPF promoted the crystallization, enhanced the strength and toughness of rPP/rPF composites to some extent while decreased thermal stability at the same time. PP‐g‐MA and POE‐g‐MA improved the dispersion and interface adhesion of rPF, and further upgraded the mechanical properties and vicat softening temperatures. Among these compatibilizers, PP‐g‐MA was most favorable to the strength improvement while POE‐g‐MA was most favorable to the toughness improvement. As for SEBS‐g‐MA, it had no obvious modification effect. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Polypropylene/ethylene-propylene rubber/nanosilica (PP/EPR/nano-SiO2) composites were prepared by a melt blending masterbatch process using a Brabender mixer. In order to improve the interfacial adhesion and achieve diverse desired properties of the composites, nanosilica surface silylation by means of two silane coupling agents: N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane (AEAPTMS) and 3-methacryloxypropyltrimethoxysilane (MPTMS) was explored. The composites were also compatibilized using three compatibilizers: methyl methacrylate grafted PP (MMA-g-PP), glycidylmethacrylate grafted PP (GMA-g-PP) and maleic anhydride grafted PP (MAH-g-PP). The properties of the blends and the composites were examined using tensile and Izod impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (ATG) and scanning electron microscopy (SEM). According to the mechanical property evaluations, the incorporation of nano-SiO2 particles into PP/EPR blend improved the tensile strength and Young’s modulus of the composites. The elongation and Izod impact strength were adversely affected. A significant improvement in the mechanical properties was obtained for the composites with AEAPTMS-SiO2 and MAH-g-PP. The DSC results indicated that the incorporation of the modified silica and MAH-g-PP increased the crystallinity of the composites. However, no significant variation in the crystallinity was observed as a result of the addition of MMA-g-PP and GMA-g-PP. The TGA results revealed that the composites exhibit a higher thermal stability than that of the neat matrix. SEM micrographs of the fractured surfaces revealed a two-phase morphology with EPR nodules being dispersed in the PP matrix. SEM also indicated that the incorporation of MAH-g-PP into PP/EPR composites contributes to a better dispersion of the EPR phase and nano-SiO2 particles in the polymer matrix.  相似文献   

9.
Eighty/twenty polypropylene (PP)/styrene–ethylene–butylene–styrene (SEBS) and 80/20 PP/maleated styrene–ethylene–butylene–styrene (SEBS‐g‐MA) blends reinforced with 30 wt % short glass fibers (SGFs) were prepared by extrusion and subsequent injection molding. The influence of the maleic anhydride (MA) functional group grafted to SEBS on the properties of SGF/SEBS/PP hybrid composites was studied. Tensile and impact tests showed that the SEBS‐g‐MA copolymer improved the yield strength and impact toughness of the hybrid composites. Extensive plastic deformation occurred at the matrix interface layer next to the fibers of the SGF/SEBS‐g‐MA/PP composites during impact testing. This was attributed to the MA functional group, which enhanced the adhesion between SEBS and SGF. Differential scanning calorimetry measurements indicated that SEBS promoted the crystallization of PP spherulites by acting as active nucleation sites. However, the MA functional group grafted to SEBS retarded the crystallization of PP. Finally, polarized optical microscopy observations confirmed the absence of transcrystallinity at the glass‐fiber surfaces of both SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrid composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1303–1311, 2002  相似文献   

10.
Two organofunctional silanes and a copolymer were used to increase the interfacial adhesion in glass fiber polypropylene (PP) reinforced composites. The performance of the coupling agents was investigated by means of mechanical property measurements, scanning electron microscopy (SEM), and dynamic mechanical analysis. The increased adhesion between the glass fibers and PP matrix observed with SEM resulted in an improvement of the mechanical and dynamic mechanical properties of the composites. Coupling achieved with the copolymer poly(propylene‐g‐maleic anhydride) (PP‐g‐MA) proved to be the most successful compared with 3‐aminopropyltrimethoxysilane and 3‐aminopropyltriethoxysilane. The combination of PP‐g‐MA with the silanes resulted in further property improvements because of the ability of the MA groups to react with the amino groups of the silanes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 701–709, 2001  相似文献   

11.
The main objective of this research was to synthesize a new compatibilisant agent (PVC‐g‐MA), which was grafted from the maleic anhydride on the PVC chains. The presence of maleic anhydride grafting on PVC was made evident by infrared analysis. PVC‐g‐MA was used like compatibilisant to solve the problem of the incompatibility between the hydrophobic polymeric matrix (PVC) and hydrophilic fiber (alfa). Composites samples were prepared with different alfa fiber loading (10, 20, and 30 wt %) and incorporating PVC‐g‐MA (1, 3, and 5 wt %) or PP‐g‐MA (3 wt %). The tensile properties, the thermal stability and the morphology of the composites were investigated. The result indicated that the PVC‐g‐MA increased the interfacial adhesion between the fibers and the polymer matrix and this effect was better than that obtained for the maleated‐polypropylene‐coupled composites. Microstructure analysis of the fractured surfaces of MAPP modified composites confirmed improved interfacial bonding. The addition of alfa and PVC‐g‐MA increased the thermal stability of the composites. The temperature of degradation of the polymer matrix increased about 16°C in comparison to the noncoupled composite, indicating that PVC‐g‐MA improved the thermal stability of the polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
In the present work, different compatibilizers, namely polyethylene‐graft‐maleic anhydride (PE‐g‐MA), polypropylene‐graft‐maleic anhydride (PP‐g‐MA), and polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene‐graft‐maleic anhydride (SEBS‐g‐MA) were used on green composites derived from biobased polyethylene and peanut shell (PNS) flour to improve particle–polymer interaction. Composites of high‐density polyethylene/peanut shell powder (HDPE/PNS) with 10 wt % PNS flour were compatibilized with 3 wt % of the abovementioned compatibilizers. As per the results, PP‐g‐MA copolymer lead to best optimized properties as evidenced by mechanical characterization. In addition, best particle–matrix interface interactions with PP‐g‐MA were observed by scanning electron microscopy (SEM). Subsequently HDPE/PNS composites with varying PNS flour content in the 5–30 wt % range with PP‐g‐MA compatibilizer were obtained by melt extrusion and compounding followed by injection molding and were characterized by mechanical, thermal, and morphological techniques. The results showed that PNS powder, leads to an increase in mechanical resistant properties (mainly, flexural modulus, and strength) while a decrease in mechanical ductile properties, that is, elongation at break and impact absorbed energy is observed with increasing PNS flour content. Furthermore, PNS flour provides an increase in thermal stability due to the natural antioxidant properties of PNS. In particular, composites containing 30 wt % PNS powder present a flexural strength 24% and a flexural modulus 72% higher than the unfilled polyethylene and the thermo‐oxidative onset degradation temperature is increased from 232 °C up to 254 °C thus indicating a marked thermal stabilization effect. Resultant composites can show a great deal of potential as base materials for wood plastic composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43940.  相似文献   

13.
This article evaluates the role of cellulosic fillers in a synthetic polymer matrix like polymethylmethacrylate (PMMA) when incorporated by in situ suspension polymerization technique. Cellulose micro/nanofibers (CNF) were extracted from jute fibers and chemically modified with maleic anhydride (MACNF) to increase their interfacial compatibility with PMMA by participation of the MA moiety in the free radical polymerization with MMA. The effect of incorporating MACNF on the physical and mechanical properties of the PMMA matrix was investigated. Optical transparency was retained in the in situ prepared PMMA/cellulose composites (IPMC) similar to that of unreinforced PMMA. Another set of PMMA/cellulose composites was prepared by dispersing MACNF in PMMA matrix by ex situ solution dispersion method (EPMC). The modification of CNF with MA significantly improved the filler/matrix interfacial compatibility and in situ polymerization technique further enhanced the properties of the composites. The high moisture absorption tendency, which is a major drawback of the cellulose filled composites, remarkably reduced in IPMC. POLYM. COMPOS., 36:1748–1758, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Multi‐walled carbon nanotubes (MWCNTs) filled polypropylene (PP) composites were prepared by a corotating intermeshing twin screw extruder. To improve the dispersion of MWCNTs, the surface of MWCNT was modified with 1,10‐diaminodecane, and maleic anhydride grafted polypropylene (MA‐g‐PP) was used as a compatibilizer. Micrographs of well dispersed functionalized MWCNTs (diamine‐MWCNT) were observed due to the reaction between MA‐g‐PP and diamine‐MWCNT in PP/MA‐g‐PP/diamine‐MWCNTs composites. The different behaviors in crystallization and melting temperatures of PP/MA‐g‐PP/diamine‐MWCNTs composite were observed compared to PP and PP/neat‐MWCNT. Especially, the decomposition temperature of the composite was increased by 50°C compared to PP. PP/MA‐g‐PP/diamine‐MWCNTs composite showed the highest complex viscosity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Maleic anhydride‐grafted polypropylene (MA‐g ‐PP) was hybridized with pure PP to form hybrid films with the aim to enhance the dielectric performances of the PP film via polarity adjustment. The changes of microstructure and crystallinity of PP matrix by MA‐g ‐PP incorporation were studied, and the polarity change was identified by the surface wettability. The dielectric behaviors of the hybrid films were explored. Increasing polarity of PP film leads to increase in dielectric constant but decrease in breakdown strength, and a balance is achieved in 10 vol % MA‐g ‐PP/PP hybrid film, with the maximum discharge energy density reaching 1.96 J cm?3 and charge–discharge efficiency as high as 96%. The ultralow loss is attributed to the dense and homogeneous microstructure together with increased crystallinity induced by incorporation of MA‐g ‐PP. These PP‐based films with increased polarity not only show enhanced dielectric performances but also provide a type of matrix that would be compatible with polar fillers to further increase dielectric properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45029.  相似文献   

17.
Short‐glass‐fiber (SGF)‐reinforced polypropylene (PP) composites toughened with a styrene/ethylene butylene/styrene (SEBS) triblock copolymer were injection molded after extrusion. Furthermore, a maleic anhydride (MA)‐grafted SEBS copolymer (SEBS‐g‐MA) was used as an impact modifier and compatibilizer. The effects of the processing conditions and compatibilizer on the microstructure and tensile and impact performance of the hybrid composites were investigated. In the route 1 fabrication process, SGF, PP, and SEBS were blended in an extruder twice, and this was followed by injection molding. In route 2, or the sequential blending process, the elastomer and PP were mixed thoroughly before the addition of SGF. In other words, either PP and SEBS or PP and SEBS‐g‐MA pellets were premixed in an extruder. The produced pellets were then blended with SGF in the extruder, and this was followed by injection molding. The SGF/SEBS‐g‐MA/PP hybrid fabricated by the route 2 process exhibited the highest modulus, yield stress, tensile stress at break, Izod impact energy, and Charpy drop weight impact strength among the composites investigated. This was due to the formation of a homogeneous SEBS elastomeric interlayer at the SGF and matrix interface of the SGF/SEBS‐g‐MA/PP hybrid. This SEBS rubbery layer enhanced the interfacial bonding between SGF and the matrix of the SGF/SEBS‐g‐MA/PP hybrid. The correlations between the processing, microstructure, and properties of the hybrids were investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1384–1392, 2003  相似文献   

18.
Polypropylene (PP) composite films were successfully prepared using melt blending by directly mixing PP pellets with zeolite A or silver‐zeolite A powder and then blowing. All the prepared films were characterized in terms of their physical, mechanical, optical, and gas permeability properties. The structure of each composite film was similar to that of the pure PP film. The crystallinity and glossy quality of the composite films were increased by the addition of silver, zeolite, and maleic anhydride grafted PP (PP‐g ‐MA). The composite PP film with zeolite A and PP‐g ‐MA exhibited a level of oxygen and carbon dioxide permeation (6438 and 15,087 cc m?2 day?1 atm?1, respectively). Finally, all the films were evaluated for their antibacterial activity and fruit packaging applications. Silver‐zeolite A‐PP composite films exhibited a bactericidal activity of 79% against Staphylococcus aureus and 52% against Escherichia coli , while the zeolite A‐PP film could extend the shelf‐life of bananas for over a week. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45450.  相似文献   

19.
The performance of thermoplastic composites is known to depend on the intrinsic properties of the two composite components, the quality of the fiber–matrix interface, and the crystalline properties of their matrix. The objective of this work is to characterize the effect of the addition of modified polypropylene (PP) and silane coupling agent on the mechanical and interfacial properties of short fiber reinforced PP composites. Differential scanning calorimetry (DSC), single fiber composite fragmentation tests (SFC), and mechanical testing are used to understand the different parameters regulating the interfacial properties of composites. No influence of the modified PP on the level of crystallinity is observed. Some differences in the size of the spherulites are observed for acrylic acid grafted PP (PP‐g‐AA). Those samples also show lower mechanical properties in spite of good interfacial interactions. Maleic anhydride grafted PP (PP‐g‐MAh) leads to better mechanical performances than PP‐g‐AA. A high MAh content PP‐g‐MAh grade with low viscosity is the best polymeric additive used in the present work. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2047–2060, 2000  相似文献   

20.
The nanocomposite materials were prepared using serpentine as filler and polypropylene (PP) as the matrix in the presence of maleic anhydride grafted polypropylene (PP‐g‐MA) compatibilizer. The melt intercalation was carried out following serpentine modification with a quaternary salt of cetyl‐trimethyl‐ammonium bromide. The structure of nanocomposites was shown by X‐ray diffraction (XRD) and transmission electron microscopy (TEM) studies. Thermal analysis performed by differential scanning calorimetry (DSC) demonstrated that the nanocomposites have higher percentage crystallinity when compared to neat PP. Dynamic mechanical analysis (DMA) revealed that the storage and loss moduli values of the nanocomposites are better than those of the matrix resin. Tensile properties of nanocomposites are significantly different from PP, e.g., the Young's modulus of the nanocomposite with 2 wt % serpentine and 6 wt % PP‐g‐MA (PP‐2,6Q) was found to be 2065 MPa, i.e., nearly 190.8% increase over the PP matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号