首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对蛇的身体结构和运动形态进行了分析,掌握了蛇的运动模型,分析了蛇在蜿蜒运动过程中的受力情况。通过对蛇行运动的研究,结合结构设计、控制系统设计等,设计一条13关节的仿生机器蛇,实现蜿蜒前进、转弯、蜷缩、抬头等动作。并对仿生蛇的设计提出一些看法,结合实际,对其未来发展提出建议。  相似文献   

2.
In this paper, we develop a semi-autonomous serially connected multi-crawler robot for search and rescue. In large-scale disasters, such as earthquakes and tornadoes, the application of rescue robots to search for survivors under rubble would be beneficial. Snake-like robots (robots composed of serially connected units) are an effective candidate for such robots. Their long body enables them to overcome obstacles, and they can move into narrow spaces because of their thin shape. However, conventional snake-like robots have significant problems with operability. The numerous degrees of freedom of their bodies require complex operation to overcome obstacles, and training is required for the operators. Thus, survivors or community members cannot operate conventional robots to search for victims, despite the availability of such rescue robots. Here, we address this problem and develop a semi-autonomous serially connected multi-crawler robot designed for non-trained operators, such as community members or rescued survivors. It can be controlled easily by a conventional two-channel user interface with levers for turning and straight line motion. To demonstrate the effectiveness of our proposed mechanism, a prototype robot was developed and experiments were conducted. The results confirm that the proposed robot had both higher operability and higher mobility than conventional robots.  相似文献   

3.
针对搜救机器人对多信息获取与处理、远程监控与运动控制的实时高性能需求,设计了以ARM微处理器STM32为核心、多传感器融合的自主柔性变形蛇形机器人控制系统,实现了机器人的远程监控与运动控制、多传感器环境信息采集等功能。整个控制系统具有良好的扩展性、硬件可裁剪性。通过模拟灾难废墟场景实验,结果表明:蛇形机器人控制系统可实现多信息的实时准确无线通信,在不同的环境中,具有良好的多步态运动稳定性和自主移动性能。  相似文献   

4.
针对蛇形机器人姿态解算问题,陀螺存在漂移特性,加速度计的测量值包含重力加速度和运动加速度,磁强计易受周围环境地磁干扰,并且蛇形机器人采用嵌入式微处理器,需要减少计算量.设计了用互补滤波器来实现惯性传感器的数据融合,用四元数进行姿态解算的方法.经过实验验证表明:采用互补滤波和四元数进行姿态解算能有效融合各个惯性传感器的数据,计算量小,能够满足蛇形机器人对精度和实时性的要求.  相似文献   

5.
针对蛇形机器人采用的循环抑制CPG模型,为解决CPG控制模型中参数整定效率低、不稳定的问题,阐述基于CPG模型的蛇形搜救机器人控制系统总体方案的设计,提出一种基于遗传算法的CPG控制模型参数优化方法,实现链式CPG网络的节律输出。仿真实现蛇形搜救机器人各关节控制信号的有效输出,仿真结果表明,该方法具有高效、准确、稳定等优点,可有效应用于蛇形搜救机器人的步态控制。  相似文献   

6.
With slim and legless body, particular ball articulation, and rhythmic locomotion, a nature snake adapted itself to many terrains under the control of a neuron system. Based on analyzing the locomotion mechanism, the main functional features of the motor system in snakes are specified in detail. Furthermore, a bidirectional cyclic inhibitory (BCl) CPG model is applied for the first time to imitate the pattern generation for the locomotion control of the snake-like robot, and its characteristics are discussed, particularly for the generation of three kinds of rhythmic locomotion. Moreover, we introduce the neuron network organized by the BCI-CPGs connected in line with unilateral excitation to switch automatically locomotion pattern of a snake-like robot under different commands from the higher level control neuron and present a necessary condition for the CPG neuron network to sustain a rhythmic output. The validity for the generation of different kinds of rhythmic locomotion modes by the CPG network are verified by the dynamic simulations and experiments. This research provided a new method to model the generation mechanism of the rhythmic pattern of the snake.  相似文献   

7.
基于桥梁缆索无损检测的特殊性,且针对目前桥梁缆索检测智能化的需要,介绍了一种新型的检测系统,即基于桥梁缆索检测的蛇形机器人.此蛇形机器人具有较大的自由度,有非常好的环境适应能力.在分析蛇形机器人的本体结构特点和运动机理的基础上,并根据桥梁缆索的特性,研究了基于蛇形的器人桥梁缆索的无损检测系统.通过实验证明:此无损检测系...  相似文献   

8.
为方便实现对桥梁缆索的检测和日常维护任务,利用蛇形机器人良好的适应性,通过研究其控制规律,给出了一种简单的并可实现蛇形机器人沿缆索进行螺旋攀爬运动的控制函数.分析了螺旋攀爬运动中控制参数与螺旋参数之间的关系,利用粒子群优化算法对控制参数与螺旋半径、螺旋上升角、螺距之间的关系进行优化拟合,给出了拟合函数.通过Webots...  相似文献   

9.
蛇形机器人本体是一种多关节串联机构,可以在各种环境中运动,并且当一端固定时可以实现操作.本文提出一种蛇形机器人移动与操作的统一动力学建模方法,统一蛇形机器人移动状态及操作状态的动力学方程.机器人从移动状态到操作状态的转换意味着机构上的重构,即移动状态无固定基座,而操作状态有固定基座.应用虚设机构法在机构学上统一这两种状态(即构形空间中的嵌入关系),利用指数积公式描述这两种状态的运动学方程.在Riemann流形上建立起蛇形机器人移动和操作的动力学模型,并在对动力学模型中各项计算分析的基础上发现机器人操作动力学方程可直接由移动动力学方程退化得到,同时应用子流形的Gauss公式给出证明.由此在微分几何框架下建立蛇形机器人移动与操作的统一动力学模型.按照几何的观点将蛇形机器人移动与操作动力学模型的统一看作是子流形问题,并赋予几何意义.较单独针对蛇形机器人的一种状态(移动或操作)的动力学模型而言,这种统一的动力学模型能够更深刻地揭示蛇形机器人动力学的特征.  相似文献   

10.
A snake-like robot, whose body is a seried-wound articulated mechanism, can move in various environments. In addition, when one end is fixed on a base, the robot can manipulate objects. A method of dynamic modeling for locomotion and manipulation of the snake-like robot is developed in order to unify the dynamic equations of two states. The transformation from locomotion to manipulation is a mechanism reconfiguration, that is, the robot in locomotion has not a fixed base, but it in manipulation ha...  相似文献   

11.
Hose-shaped rescue robots have been developed for searching narrow spaces such as under collapsed buildings. The posture estimation independent of the past history is critical, because conventional inertial-sensor-based posture estimation has two main problems; a cumulative error problem peculiar to inertial sensors, and a sudden posture change problem caused by external forces. For coping with the two problems, we developed a novel posture estimation method by putting an active microphone array, a set of microphones and loudspeakers, on the robot. The method calculates the time difference of arrival (TDOA) of the reference signal emitted from one loudspeaker, and estimates the posture from the distance obtained by TDOA. This concise method still has three problems: (1) external noise, (2) reverberation and reflection, and (3) obstacles. These problems are tackled by (1) TSP signal, (2) GCC-PHAT and a threshold-based onset detection, and (3) rejecting incorrect onset times, respectively. Experiments with simulated sounds and actual recordings demonstrate that the method attains the performance of estimation comparable to that of conventional methods, that is, less than 20 cm of the tip position error. Even without historical data, the method attains the similar performance while conventional methods fail.  相似文献   

12.
This article presents a project that aims at constructing a biologically inspired amphibious snake-like robot. The robot is designed to be capable of anguilliform swimming like sea-snakes and lampreys in water and lateral undulatory locomotion like a snake on ground. Both the structure and the controller of the robot are inspired by elongate vertebrates. In particular, the locomotion of the robot is controlled by a central pattern generator (a system of coupled oscillators) that produces travelling waves of oscillations as limit cycle behavior. We present the design considerations behind the robot and its controller. Experiments are carried out to identify the types of travelling waves that optimize speed during lateral undulatory locomotion on ground. In particular, the optimal frequency, amplitude and wavelength are thus identified when the robot is crawling on a particular surface.  相似文献   

13.

独轮机器人前后平衡由一车轮保持并驱动其前后运动, 侧向平衡则由一基于空气阻力的风轮保持, 以此结构为被控对象建立该系统动力学模型. 以一种非线性的控制方法—–自抗扰控制方法控制其平衡运动, 在系统的纵向和侧向上分别设计一个自抗扰控制器, 系统的内扰和外扰被视为自抗扰控制器的总扰动. 以PID 控制方法作对比实验, 仿真结果表明了自抗扰控制算法的强鲁棒性和有效性.

  相似文献   

14.
ABSTRACT

In this paper, we propose the design of a single-wheeled robot capable of climbing stairs. The robot is equipped with the proposed climbing mechanism, which enables it to climb stairs. The mechanism has an extremely simple structure, comprised of a parallel arm, belt, harmonic drive, and pulley. The proposed climbing mechanism has the advantage of not requiring an additional actuator because it can be driven by using a single actuator that drives the wheel. The robot is equipped with a control moment gyroscope to control the stability in a lateral direction. Experimental results demonstrate that the robot can climb stairs with a riser height of 12–13?cm and a tread depth of 39?cm at an approximate rate of 2 to 3 s for each step.  相似文献   

15.
In the emerging paradigm of animate vision, the visual processes are not thought of as being independent of cognitive or motor processing, but as an integrated system within the context of visual behavior. Intimate coupling of sensory and motor systems have found to improve significantly the performance of behavior based vision systems. In order to study active vision systems one requires sensory-motor systems. Designing, building, and operating such a test bed is a challenging task. In this paper we describe the status of on-going work in developing a sensory-motor robotic system, R2H, with ten degrees of freedoms (DOF) for research in active vision. To complement the R2H system a Graphical Simulation and Animation (GSA) environment is also developed. The objective of building the GSA system is to create a comprehensive design tool to design and study the behavior of active systems and their interactions with the environment. GSA system aids the researchers to develop high performance and reliable software and hardware in a most effective manner. The GSA environment integrates sensing and motor actions and features complete kinematic simulation of the R2H system, it's sensors and it's workspace. With the aid of the GSA environment a Depth from Focus (DFF), Depth from Vergence, and Depth from Stereo modules are implemented and tested. The power and usefulness of the GSA system as a research tool is demonstrated by acquiring and analyzing images in the real and virtual worlds using the same software implemented and tested in the virtual world.This research was supported by the U.S. Department of Energy under the DOE's University Program in Robotics for Advanced Reactors (Universities of Florida, Michigan, Tennessee, Texas, and the Oak Ridge National Laboratory) under Contract No. DOE DE-FG02-86NE37968.  相似文献   

16.
从履带机构的结构复杂度、越障性能、可操作性以及履带的接地比压4个方面分析了现有煤矿救援机器人履带行走机构的优缺点,针对现有履带结构的优缺点设计了一种新型履带行走机构的结构;结合煤矿救援机器人的相关要求,给出了该新型结构主要尺寸的优化计算公式;根据所提出的计算公式,设计了CUMT-5型煤矿救援机器人。CUMT-5机器人的实际运行结果表明,该新型履带行走机构结构简单,越障性能好,具有良好的可操作性。  相似文献   

17.
Abstract

In this study, we propose a new robot system consisting of a mobile robot and a snake robot. The system works not only as a mobile manipulator but also as a multi-agent system by using the snake robot's ability to separate from the mobile robot. Initially, the snake robot is mounted on the mobile robot in the carrying mode. When an operator uses the snake robot as a manipulator, the robot changes to the manipulator mode. The operator can detach the snake robot from the mobile robot and command the snake robot to conduct lateral rolling motions. In this paper, we present the details of our robot and its performance in the World Robot Summit.  相似文献   

18.
蛇形机器人(以下简称机器蛇)因其身体细长和环境适应能力强的优点被广泛应用于不适宜人类工作的领域.介绍了一种仿生机器蛇的设计与制作.设计时选用体积小、动力足的P0090舵机作为机器蛇驱动,Atmega128和Atmega8单片机作为控制器.HPD8506A作为无线数据发射模块,完成PC与机器蛇的数据传输.根据舵机尺寸逆向设计关节、蛇头和蛇尾,采用正交关节连接方式装配,实现机器蛇蜿蜒、蠕动等多步态的移动,加载的红外避障传感器保障了机器蛇能安全躲避障碍物.此系统的研究为今后机器蛇在狭小管道或高空缆绳上攀爬并完成检测任务奠定基础.  相似文献   

19.
Over the last few decades, there have been a large number of attempts to automate welding in the shipbuilding process. However, there are still many non-automated welding operations in the double-hulled blocks, even though it presents an extremely hazardous environment for the workers. And, the hazards come about mainly because of the dimensional constraints of the access-hole. Thus, much effort has been recently directed toward the research on compact design of the fully-autonomous robot working inside of the double-hulled structures. This paper describes the design, integration, simulations, and field testing trials of a new type of welding robotic system, the RRXC, which is composed of a 6-axis modularized controller, a 3P3R serial manipulator, and an auxiliary transportation device. The entire cross section of the RRXC is small enough to be placed inside the double-hulled structures via a conventional access hole of 500×700 mm2, from the outside shipyard floor. The weight of the manufactured RRXC is 60 kg, with a 6-axis manipulator and modularized controller, and the weight of an auxiliary transportation device is 8 kg, with a 2.5 m steel wire of 6Φ. Throughout the field tests in the enclosed structures of shipbuilding, the developed RRXC has successfully demonstrated welding functions without the use of any additional finishing by manual welders, and has shown good mobility using an auxiliary transportation device in double-hulled structures.  相似文献   

20.
《Advanced Robotics》2013,27(3):243-260
Pantograph mechanisms for force generation, called PMFG, are proposed. They are based on four-bar linkage mechanisms and are effective in saving energy, and simplifying and miniaturizing a total system of force generation. The static relationship between the motion and output force of the mechanism is analysed for optimization of the mechanical dimensions of the structure. For optimization of the pulley shapes, analytical and approximate methods are discussed. The experimental results show that eccentric non-circular pulleys are more effective than circular pulleys in producing an accurate force satisfying the required relations between the force and displacement of the mechanism. The mechanism is applicable to the realization of various kinds of force vs. displacement requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号