首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摩擦纺包缠纱纺织预型件及其复合材料的加工   总被引:1,自引:0,他引:1  
本文研究了摩擦纺包缠纱纺织预型件及其复合材料的加工性能。借助地机织,纺织和针织等三种预型件加工方法,通过必种典型纺织结构的加工研究了摩擦纺包缠纱的预型件加工性能,并在平板热压机上成型了几种结构的复合材料,结果表明:摩擦纺包弹纱可以用于纺织预型件加工以成型纺织结构型的复合材料,灵活地运用纺织结构可以得到独特结构的复合材料,此外摩擦纺包缠纱经适当防剥离处理后,可加工出紧密结构机织物,以成型较高纤维体积  相似文献   

2.
One of the major challenges in textile composites is the verification of their manufacturing quality, which has large influence on the mechanical properties. Quality assessment of these composites needs to have sufficient knowledge about the various types of nondestructive techniques and their inspection. The aim of this article is to evaluate the potential of three inspection techniques named ultrasounds, vibrations, dimensional measurement for detecting textile reinforcement defects in composites. The research work was focused on two types of defects, namely fiber/yarn breakage and ply misorientation, applied to woven textiles composite produced by vacuum assistant resin transfer molding. Fabric misorientation appeared to have an influence on the dynamic behavior of the textile composite samples. Potential solutions have also been identified to solve the issue of signal attenuation caused by the fabric observed during conventional and polar ultrasonic C‐scanning. A closer look at plates surface around eliminated unit cells by coordinate measuring machine at mesoscale did not appear any specific abnormality on due to artificially induced defect. POLYM. COMPOS., 35:1818–1825, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
Textile structures have become quite popular as reinforcement materials in composite laminates due to their high impact‐damage tolerance and energy absorption ability. The impact performance of textile composites is not only affected by the type of fiber/matrix but also by the fabric structure used as reinforcement. The aim of this study was to compare the mechanical and ballistic performance of composite laminates reinforced with single‐layer and double‐layer interlocked woven fabrics. Kevlar®−29 multifilament yarn was used for preparation of all the fabric structures and epoxy resin was used as the matrix system. The composites were produced using a hand lay‐up method, followed by compression molding. The mechanical and ballistic performance of composites reinforced with single‐layer and double‐layer interlocked woven fabrics was investigated in this study. The energy absorption and mechanical failure behavior of composites during the impact event were found to be strongly affected by the weave design of the reinforcement. The composites reinforced with double‐layer interlocked woven fabrics were found to perform better than those comprising single‐layer fabrics in terms of impact energy absorption and mechanical failure. POLYM. COMPOS., 35:1583–1591, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
This paper addresses the phenomenology of strand interaction in biaxial non‐embedded braided textile structures under uniaxial tension. The specific interest in the development of new braided textile structures is a result of the shortcomings of current rope, belt, and cable performance under large strain controlled conditions. However, this work also holds particular significance in the area of textile composite preforms. In composites forming, the lateral strand compaction mechanism, which drives braid behavior under tension, may be applied to woven fabrics for predicting wrinkling during forming processes. Additionally, manufacturing models produced in this study may be used to predict shape and size limitations of braided composite preforms. In this paper, a generalized model is developed for these structures with the intent of characterizing and predicting mechanical behavior. The methodology consists of a modular framework, which includes the prediction of manufacturing parameters. Lateral strand compaction tests were performed to generate constitutive material curves for use in analytical geometric models. Model predictions correlate well with data generated from braid uniaxial tension tests. Results suggest that lateral strand strain drives braid tensile behavior.  相似文献   

5.
A simple apparatus was designed and constructed capable of measuring the unsteady-state permeability and the capillary pressure simultaneously in a simulated composite impregnation experiment. It was found that the Kozeny-Carman equation used to describe the permeability of composites during impregnation adequately described experimental results for woven fabric preform up to porosity values of 0.5. Above this value, observed deviations were attributed to interfacial effects between adjacent woven fabric layers. For woven fabric preforms made of T-300 carbon fibers, a maximum capillary pressure of 3.7 × 104 Pa (=5.4 psi) was observed at low porosity values. Thus, the capillary pressure may compete with other pressure sources in low pressure processes, such as the prepregging process. The woven fabric preform used in this study is observed to have a permeability similar to a unidirectional fibrous preform along the transverse direction. Furthermore, an existing modeling methodology capable of predicting permeability and capillary pressure through different preforms was found to be valid for fibrous preforms of complex orientation.  相似文献   

6.
《Polymer Composites》2017,38(10):2201-2211
The present analysis intends to look into the needlepunched nonwoven textile material reinforced polymer composites. The solid particle erosion wear behavior of needlepunched nonwoven fabric mat reinforced epoxy composites were assessed using silica sand particles with the size of 250, 350, and 450 μm. Taguchi analysis was also carried out on the basis of design of experiments (DoE) approach to establish the interdependence of operating parameters. Mechanical and physical properties of composites were also evaluated experimentally, and the storage modulus (E′), loss modulus (E″) and damping factor (tan δ) characteristics were analyzed with the help of dynamic mechanical analyzer (DMA) in the temperature range of 20–200°C. Surface morphology of the eroded surfaces of composites were also analyze by scanning electron microscopic (SEM) to discuss the feasible erosion mechanism on composite surfaces. The result reveals that fiber content and impact velocity has an invulnerable impact on the erosion rate of needlepunched nonwoven fabric mat‐epoxy composites. The mechanical and physical properties are meliorating with incorporation of fabric mat weight percentage in composites, and the measured damping factor (tan δ) peaks of T g for needlepunched nonwoven fabric mat epoxy composites ranged from 100 to 110°C. POLYM. COMPOS., 38:2201–2211, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
为了解决三维机织热塑性复合材料中三维机织预型件的织造和热塑性基体浸入预型件这两大难题,开发了制备三维机织热塑性复合材料的新工艺,即微编纱的编织-用微编纱织造三维机织预型件-复合固化成型.该工艺的创新点是利用微编纱来织造三维机织预型件,然后复合成型.对微编纱的性能做了基本的介绍,主要探讨了三维机织预型件的织造及复合成型工艺,为日后三维机织热塑性复合材料的生产加工开辟了一条新的途径.  相似文献   

8.
The aim of the present work is to study the effect of conventional textile treatments of woven flax on the mechanical properties and the water sorption of flax/epoxy composites. The flax fabrics are standard 2/2 twills. Various treatments are carried out on fabric such as mercerization, bleaching, and leaching for long fibers or on yarn such as leaching for short fibers. A model, based on a modified rule of mixture applied to composite reinforced with woven fabric, is developed to include the effect of fiber and porosity volume fractions on composite stiffness and strength. Most treatments improve tensile stiffness and strength of flax/epoxy composite and reduce composite water sorption. We prove by X‐ray fluorescence analysis, thermogravimetric analysis, and tensile tests of dry fabric that it is due to an improvement in the interfacial bonding between fibers and matrix. The best performances are achieved with bleaching and mercerization treatment. The weakest performances are obtained with the composites made with leached yarns. POLYM. COMPOS., 34:1761–1773, 2013. © 2013 Society of Plastics Engineers  相似文献   

9.
In this study, experimental investigations are performed to check the thermal and mechanical behavior of woven Basalt/PP and Basalt/Jute fiber hybrid and nonhybrid woven fabrics and their composite laminates with epoxy. Three types of weaves are used for both hybrid and nonhybrid structures. Tensile testing of all the woven fabrics is performed. The thermal properties of the fabrics, that is, thermal resistance, diffusivity, and thermal conductivity, etc. are also studied vis‐a‐vis physiological behavior. Results are discussed in terms of fiber composition, woven geometry, and the fiber : resin ratio. Fabricated composite samples are subjected to dynamic mechanical analysis (DMA) and thermo gravimetric analysis (TGA). The thermophysiological properties are also studied in reference to yarn and fabric structure. POLYM. COMPOS., 37:2982–2994, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.

The mechanical and fracture behavior of polymer composites are the subject of great interest from many years and still interesting among the researchers. Composites are extremely used for their superior mechanical, thermal and fracture toughness properties in various sectors such as automobile, aerospace and defense applications. In this article, unidirectional and woven high strength glass, carbon and Kevlar fiber reinforced polymer textile composites are taken into consideration for the comprehensive review of mechanical behavior and fracture toughness characterization. Current review work began with the introduction to polymer textile composites with its manufacturing stages, processing techniques and factors affecting the performance under mechanical loading. The mechanical behavior of high strength fiber reinforced polymer (HSFRP) textile composites was discussed in tension, compression, flexural, low velocity and high velocity impact loading with the recent numerical and experimental characterization studies. Textile geometrical modeling and CAE tools are also described for numerical characterization. Under the influence of mechanical loading on composites, failure occurs actually due to the crack initiation and propagation, so it is also required to characterize. Significant elements of fracture mechanics are well described for the better understanding of fracture toughness characterization. Mode-I, Mode-II, Mode-III interlaminar and Mode-I intralaminar fracture toughness characterization are widely explained by considering the effect of filler content, fiber orientation and fiber volume fraction. Fracture toughness characterization techniques and research summery are uniquely presented by considering various factors under one umbrella for better understanding of fracture behavior. Statistical Weibull distribution is also presented for the failure prediction of composites.

  相似文献   

11.
This article deals with the drapability of 3D woven glass fabrics for composite applications. The study focuses on forming a 3D fabric over the mold, the result is a preform, which generally is then injected with a polymer matrix by so called Liquid Composite Molding (LCM) technique. When draping pre–impregnated composites, the fabric is embedded in the epoxy resin as matrix material. Various drape models for dry and pre‐impregnated fabrics have been proposed in the work. Solidworks and ANSYS are the software used for modeling and simulation of 3D woven fabric composites. Given the linear density (tex) and density of E‐glass fiber, the radius of the yarn was calculated. So far the cross section of yarn is assumed to be perfectly circular in shape, keeping the perimeter of yarn constant the circular cross section was deformed into a race track shape which is a much more practical and realistic shape of a yarn cross section. After calculating all the required dimensions, all the three 3D woven structures namely angle interlock, warp interlock and orthogonal were developed in solidworks. All the parameters like total number of warp and weft yarn per unit distance and thickness of the fabric were kept constant in all three structures. The analysis is based on first principles and the parameters of yarn and fabric construction. Results obtained through simulation are reported. These are validated with experimental composite samples. The model used to predict drapability of 3D woven glass‐epoxy composite gives good results. Orthogonal structure proves to be the best as far as resistance to deformation is concerned. However, if a relatively more flexible and formable prepreg is desired, it is advisable to use angle interlock or warp interlock structures. Warp interlock 3D structure proves most beneficial for draping on a mold. POLYM. COMPOS., 37:472–480, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
制备工艺对亚麻增强聚丙烯复合材料拉伸性能的影响   总被引:4,自引:0,他引:4  
以亚麻纤维为增强体,与聚丙烯(PP)长丝进行丝束级共混,形成PP包覆亚麻的纱线结构,利用机织工艺织成二维机织布,作为复合材料的预制件。采用层合热压方法制备PP/亚麻复合材料板材。通过对板材拉伸性能测试及扫描电镜(SEM)拉伸断口形貌分析,研究了不同纤维体积分数、织造密度及织造组织等因素对复合材料拉伸性能的影响。结果表明,在选取最优热压温度与压力的条件下,纤维体积分数为50%的板材性能最优;经向密度相同时,拉伸性能随着纬向密度的增加而提高;经、纬向密度均相同时,斜纹3/1组织的板材性能最优,纬向最大拉伸强度可达92.42 MPa。  相似文献   

13.
周红涛  钱坤  董硕 《中国塑料》2021,35(1):54-59
研究了平面三向织物及其增强橡胶复合材料的撕裂性能,分别对预切口平行于平面三向织物中某一组纱线和平行于平面三向织物中相邻两组纱线角平分线方向2种情况下的撕裂性能进行研究,并与平纹织物增强橡胶复合材料进行了对比.结果表明,平面三向织物及其增强橡胶复合材料的撕裂过程可分为初始阶段、预切口张开阶段和撕裂口扩展阶段等3个阶段,分...  相似文献   

14.
戎琦  邱夷平 《纤维复合材料》2006,23(2):13-15,24
通过对超厚三维正交机织复合材料及二维机织层合板分别进行拉伸和压缩实验,研究比较两复合材料刚度和强度特性的差异;研究发现无论是三维机织材料的拉、压,还是二维层合板的拉、压的应力一应变曲线都可近似为直线关系,而且具有脆性破坏的特点;三维复合材料的拉、压强度要高于二维层合板,是由于不同的增强相结构及纤维含量造成;不同的破坏模式对材料强度影响很大。  相似文献   

15.
为使纺织复合材料同时具有机织结构复合材料和针织结构复合材料的综合力学性能,通过混合铺层方式制备机织/针织混合结构复合材料。以芳纶机织平纹织物和针织罗纹织物为增强体,以环氧树脂为基体,调整复合材料中增强体的铺层顺序,利用真空辅助成型技术制备四层层压机织/针织混合结构复合材料。通过对复合材料拉伸性能、弯曲性能和冲击性能的测试,分析混合铺层和铺层顺序对芳纶环氧树脂复合材料力学性能的影响。结果表明,混合铺层和铺层顺序对芳纶环氧树脂复合材料的弯曲强度和冲击强度有较大影响,特别是对罗纹结构复合材料纬向弯曲强度和冲击强度的改善。当采用相同铺层方式,罗纹织物为受力面时,机织/针织混合结构复合材料具有较大弯曲强度和冲击强度。  相似文献   

16.
Polymer-based composite structures have advantages over many other materials. The most important advantage is the higher mechanical properties obtained from the composites when supported by fiber reinforcement. The mechanical and thermal properties of fiber-reinforced composite structures are affected by the amount of fibers in the structures, orientation of the fibers and fiber length. Silk and cotton fibers are used in many fields but especially in clothing and textiles. However, there is not enough research on their usage as reinforcement fibers in composite structures. Silk fibers as a textile material have better physical and mechanical properties than other animal fibers. The improvement of the mechanical and physical properties of the composite structures allows them to be used in many areas. From economical, technological and environmental points of view, the improvement of mechanical and physical properties of polymeric materials are receiving much attention in recent studies.

In this study, different application areas were chosen to evaluate the waste silk and waste cotton rather than classic textile applications. Waste silk and cotton and recycled polycarbonate polymer were mixed and as a result composite structures were obtained. Silk and cotton waste fiber dimensions were in between 1 mm, 2.5 mm and 5 mm. The recycled PC/silk and cotton wastes were mixed in the rates of 97%/3%. Mixtures were prepared by twin-screw extruder. Tensile strength, % elongation, yield strength, elasticity modulus, Izod impact strength, melt flow index (MFI), heat deflection temperature (HDT) and Vicat softening temperature properties were determined. To determine the materials' thermal transition and microstructure properties, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used.  相似文献   

17.
As new developments are brought to the group of manufacturing processes for composite parts known as liquid composites molding (LCM), the compaction behavior of the textile reinforcements is increasingly seen as an important parameter of the definition of these processes. The evolution of the permeability tensor of the reinforcements with time, the general kinetics of the manufacturing operations, and the modelization of these processes depend on a large extent on the compaction behavior of the reinforcements used, especially in flexible-wall RTM and autoclave molding. Also, more research efforts are devoted toward the development of a complete analytical model of the properties of heterogeneous textile reinforcements. In this paper the published experimental data related to the compaction and relaxation of random mats and woven reinforcements are gathered. Observed parameters are defined, which allow numerical comparisons of the experimental curves to be made, as well as the identification of general trends seen with most tested reinforcements. The effects of various processing parameters are identified, and relations to published analytical models of the mechanical properties of fibrous assemblies are discussed.  相似文献   

18.
Three‐dimensional (3D) orthogonal woven composite has high stiffness, strength, and energy absorption capacity along X, Y, and Z directions because there are no crimps in yarn. This paper presents mechanical behaviors and energy absorptions of the 3D orthogonal hybrid woven composite under transverse impact and quasi‐static loading by flat‐ended rod. The failure load and energy absorption of the composite increase with the increase in loading rate. The damage morphology of the composite coupon manifests the compression failure in the front side and tension failure in rear side. There are no delaminations in the composite coupons for both quasi‐static and impact loading for the existence of Z‐yarn in fabric structure. This phenomenon manifests the potential application of the 3D orthogonal woven composite to impact resistance areas. POLYM. COMPOS., 27: 410–416, 2006. © 2006 Society of Plastics Engineers  相似文献   

19.
Owing to their complex structural characteristics, 3D woven composites display different mechanical properties and failure modes from traditional composite laminates. The relations between the weaving geometry and main mechanical properties of composites are obtained by studying the internal structures of 3D woven textile. This paper reviews the research on the mechanical behavior such as tension, compression, shear, flexural, and impact properties, and analytical models of 3D woven polymer matrix composites mainly in four major inner structures and discusses the development of mechanical properties and applications of 3D woven fabrics and suggests further studies on aero industry.  相似文献   

20.
Flax-nonwoven reinforced polypropylene has become a competitor to textile glass fabric reinforced polypropylene because of its economic and ecological advantages. Suitable application forms are needle-punched 100% flax or hybrid fabrics of flax/polypropylene manufactured of rough and fine decorticated flax. The construction of the nonwoven influences the strength, handle, matrix compatibility, and flow of the fabric. In this way, composite properties may be tailored to each end-use. The main application fields are subassemblies exposed to a medium range of stress. The method of hybrid-nonwoven manufacturing represents a technological alternative to the existing film-stacking method. Produced with lower technology, the parameters of composites of hybrid-nonwovens are comparable to properties of composites manufactured by the film-stacking method. Adhesion characteristics may be improved by addition of compatibilizers. The compatibilizers may be added to the flax-fiber surface or may be inserted into the polypropylene. All these methods lead to comparable mechanical parameters for the fiber composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号