首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a method for estimating the energy output from one‐axis tracking non‐concentrating PV systems and compare the yields from different configurations. The method is based on the use of solar radiation and temperature databases and models for the performance of PV modules under given geographic conditions. In the resulting maps of energy yield for Europe it is found that there are two different one‐axis configurations that perform almost as well as a full two‐axis sun‐tracking system: one with a vertical axis and inclined modules, and the other with an inclined axis directed north–south and modules in the plane of the axis. When the inclination angles of the modules are optimized, these two configurations have an energy yield compared to an optimal fixed mounting that is approximately 30% higher in southern Europe, about 20–25% higher in central Europe, and up to 50% higher in northern Scandinavia. Compared to the two‐axis tracking, the yields are only 1–4% lower, making such one‐axis tracking systems very attractive in terms of performance relative to technical complexity and price. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We present an approach to determine the potential energy gains of flat plate non‐concentrating photovoltaic systems for the case of two‐axis tracking and two inclination angles with fixed orientation (assuming biannual adjustment) compared to the configuration of single fixed optimum angle. The calculation is based on the Photovoltaic Geographic Information System (PVGIS), which integrates modelling tools with the pan‐European solar radiation database. The results indicate that in the case of a PV system with two seasonal inclination angles, the maximum yearly gains, compared to the single fixed optimum angle, do not exceed 60–70 kWh per kWp in the Mediterranean region, while in the Baltic and North Sea regions this configuration gives less than 20 kWh extra. For the case of two‐axis tracking, the relative energy gain compared to single fixed optimum angle is highest in the Northern latitudes but the absolute gain is much higher in the South. Typical yearly gains in Portugal and the Mediterranean region are in the range of 400–600 kWh per kWp. The smallest absolute increase is found in the Northwest and Central Europe including the British Isles, where it is lower than 250 kWh per kWp. For crystalline silicon we also investigate the effects of temperature and shallow‐angle reflectivity on the comparison between fixed and tracking systems. While both effects reduce the overall energy output, the temperature degradation is stronger for tracking systems while the reflectivity reduces output more for fixed systems. The combined effect is almost equal for fixed and two‐axis tracking systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Tracking systems can increase the amount of electricity generated by photovoltaic (PV) modules, by actively orienting each module to intercept more solar energy. We find that horizontal one‐axis tracking systems can increase PV generation by 12–25% relative to south‐facing fixed mount PV systems with 25° tilts in the contiguous USA, and two‐axis tracking systems can increase PV generation by 30–45% relative to fixed mount systems. Tracking systems increase PV generation more significantly in arid regions such as the southwest USA than in humid regions with persistent cloud cover such as the Pacific Northwest and coastal Atlantic states. We find that fixed and tracking PV systems have similar interannual variability in their generation profiles, and this variability is primarily driven by project location. Tracking PV projects cost more than fixed tilt systems, per unit capacity, and we explore how much more tracking projects could cost while generating similar levelized costs of energy as fixed tilt systems. We define this as the breakeven additional cost of tracking and find that it is primarily driven by three factors: (i) regional tracking performance, (ii) fixed tilt system costs that tracking projects compete against, and (iii) additional tracking operation and maintenance costs. Using this framework, we explore the relative competitiveness of tracking systems for a range of fixed and tracking PV prices and evaluate how tracking competitiveness varies by region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
To increase the efficiency of photovoltaic (PV) systems, maximum power point (MPP) tracking of the solar arrays is needed. Solar arrays output power depends on the solar irradiance and temperature. Also the mismatch phenomenon caused by partial shade will affect the output power of solar systems and lead to the incorrect operation of conventional MPP tracker. Under partially shaded conditions, the solar array power–current characteristic has multiple maximum. This paper presents a maximum power point tracking (MPPT) with particle swarm optimization method for PV systems under partially shaded condition. The performance of the proposed method is compared with perturb and observe (P&O), improved P&O, voltage‐based maximum power point tracking and current‐based maximum power point tracking algorithms, especially, under partially shaded condition. Simulation results confirm that proposed MPPT algorithm with high accuracy can track the peak power point under different insolation, temperature and partially shaded conditions, and it has the best performance in comparison with four mentioned MPPT algorithms. Also under rapidly changing atmospheric conditions, the P&O algorithm is diverged. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Partial shading has been recognized as a major cause of energy losses in photovoltaic (PV) power generators. Partial shading has severe effects on the electrical characteristics of the PV power generator, because it causes multiple maximum power points (MPPs) to the power‐voltage curve. Multiple maxima complicate MPP tracking, and the tracking algorithms are often unable to detect the global maximum. Considerable amount of available electrical energy may be lost, when a local MPP with low power is tracked instead of the global MPP. In this paper, the electrical characteristics of series‐connected silicon‐based PV modules under various partial shading conditions are studied by using a Matlab/Simulink simulation model. The simulation model consists of 18 series‐connected PV modules, corresponding to a single‐phase grid‐connected PV power generator. The validity of the simulation model has been verified by experimental measurements. The voltage and power characteristics of the PV power generator have been investigated under various system shading and shading strength conditions. The results can be utilized to develop new MPP tracking algorithms and in designing, for example, building integrated PV power generators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A low‐cost circuit was developed for stable and efficient maximum power point (MPP) tracking in autonomous photovoltaic‐motor systems with variable‐frequency drives (VFDs). The circuit is made of two resistors, two capacitors, and two Zener diodes. Its input is the photovoltaic (PV) array voltage and its output feeds the proportional‐integral‐derivative (PID) controller usually integrated into the drive. The steady‐state frequency–voltage oscillations induced by the circuit were treated in a simplified mathematical model, which was validated by widely characterizing a PV‐powered centrifugal pump. General procedures for circuit and controller tuning were recommended based on model equations. The tracking circuit presented here is widely applicable to PV‐motor system with VFDs, offering an efficient open‐access technology of unique simplicity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A review of existing studies about life cycle assessment (LCA) of PV systems has been carried out. The data from this review have been completed with our own figures in order to calculate the energy payback time (EPBT) of double and horizontal axis tracking and fixed systems. The results of this metric span from 2 to 5 years for the latitude and global irradiation ranges of the geographical area comprised between –10° to 10° of longitude, and 30° to 45° of latitude. With the caution due to the uncertainty of the sources of information, these results mean that a grid connected PV system (GCPVS) is able to produce back the energy required for its existence from 6 to 15 times during a life cycle of 30 years. When comparing tracking and fixed systems, the great importance of the PV generator makes advisable to dedicate more energy to some components of the system in order to increase the productivity and to obtain a higher performance of the component with the highest energy requirement. Both double axis and horizontal axis trackers follow this way, requiring more energy in metallic structure, foundations and wiring, but this higher contribution is widely compensated by the improved productivity of the system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
张晖 《电子设计工程》2012,20(23):99-101
双轴光伏寻日系统可以跟踪太阳的运动,使光伏组件始终正对着太阳接受到更多的太阳辐射。从而提高光伏板的输出功率。该装置以AT89S52单片机为核心处理芯片,采用时控与光控相结合的方式,控制直流电机实现寻日跟踪。通过实际安装测试,光伏发电系统的发电量得到显著提高,达到预期目标。  相似文献   

9.
During the last decade, the market penetration of photovoltaic (PV) technology has been increased tremendously worldwide. In the EU context, following the quick development in German and Spanish PV sector, Italy is currently one of the most interesting market. In view of these facts, it is strategic to perform detailed technical and economic analyses to establish energy performances and profitability of the PV plants, depending on their configurations. In particular, in addition to the selection of main components, such as inverters and modules, which are now characterized, on average, by good performance levels, the debate on the support structures is still open. In detail, the choice may fall, for example, on traditional fixed structures or on one/two axis tracking systems, that could ensure best productivity per unit of power, but also are typically characterized by higher complexity and land‐occupation factors than the first ones. The purpose of this work is to carry out performance analyses on the most widespread plant configurations, taking into account different Italian climatic contexts, considering technical, energetic, and economic points of view. With this aim, different types of components (modules and inverters) and ground‐mounting structures (fixed, one‐axis, two‐axis) have been evaluated. Subsequently, their obtainable performances have been estimated in three different locations (Milano, Roma, Palermo) that have been considered representative of average irradiation levels available in Italy. Analyses have been carried out by computer simulations, through two consequent levels of detail, highlighting the main performance influence‐factors. In conclusion, the final profitability of each analyzed configuration has been evaluated, giving a reliable indication on their effective economic advantages. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The field-programmable gate array (FPGA) based intelligent sun tracking system proposed in this paper uses an NI 9642 controller to integrate the dual-axis sun tracking system with a Maximum Power Point Tracker (MPPT), so as to effectively increase the output power of solar panels. Furthermore, it is provided with multiple intelligent functions, so that the system can start up the sun tracking function automatically in the daytime, and automatically return to its initial position at night. It has a delay function to reduce the electric power consumed by the motor in rotation. Moreover, it can be switched to dual-axis or one-axis sun tracking freely as required by the user, and the solar panel inclination can be operated directly. The dual-axis sun tracking system uses the Particle Swarm Optimization (PSO) method to look for the parameters of the PI controller. The Taguchi Method and Logistic Map are proposed to enhance the steady state convergence of PSO in seeking the optimal solution. The MPPT uses Fuzzy Logic to adjust the step length of the incremental conductance method, so as to remedy the defects in the traditional fixed step method, and to make the solar panel output reach the maximum power point position rapidly and stably.  相似文献   

11.
Environmental conditions, such as temperature, non‐uniform irradiation, and solar shading, deeply affect the characteristics of photovoltaic (PV) modules in PV‐assisted generation systems. Several local maximum power points (MPPs) are found in the power–voltage curve of PV systems constructed by series/parallel‐connected PV modules under partially shaded conditions. The characteristics of PV systems change unpredictably when multiple MPPs occur, so the actual MPP tracking (MPPT) becomes a difficult task. Conventional MPPT methods for the PV systems under partially shaded conditions cannot quickly find the actual MPP such that the optimal utilization of PV systems cannot be achieved. Based on the p–n junction semiconductor theory, we develop a multipoint direct‐estimation (MPDE) method to directly estimate the multiple MPPs of the PV systems under partially shaded conditions and to cope with the mentioned difficulties. Using the proposed MPDE method, the multiple MPPs of the PV systems under partially shaded conditions can be directly determined from their irradiated current–voltage and power–voltage characteristic curves. The performances of the proposed MPDE method are evaluated by examining the characteristics of multiple MPPs of PV systems with respect to different shading strengths and numbers of the shaded PV modules and also tested using the field data. The experimental results demonstrate that the proposed MPDE method can simply and accurately estimate the multiple MPPs of the PV systems under partially shaded conditions. The optimization of MPP control models and the MPPT for PV systems could be achieved promisingly by applying the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Recently, installation of photovoltaic power systems such as building‐integrated photovoltaic in urban area has been spotlighted in renewable energy engineering field, even at the expense of the performance degradation from partial shading. The efficiency degradation of maximum power point tracking (MPPT) performance can be compensated by a kind of power‐conditioning system architecture such as module‐integrated converters (MIC), which can handle the optimal‐operation tracking for its own photovoltaic (PV) module. In case of a MIC with series‐connected outputs, it is easy to obtain a high DC‐link voltage for multiple stage PV power conditioning applications. However, switching ripple of the DC‐link voltage also increases as number of the modules increases. In this paper, as a solution for the ripple reduction, interleaved pulse width modulation‐phase synchronizing method is applied to the PV MIC modules. The switching‐ripple analysis of the MPPT power modules were performed and compared between the cases such as phase control or not. For the implementation of the phase control among the modules, Zigbee (XBee Pro, Digi International, Minnetonka, MN, USA) wireless communications transceiver and DSP (TMS320F28335, Texas Instruments, Dallas, TX, USA) series communications interface are utilized. Hardware prototype of the double‐module boost‐type 80‐W MICs has been built to validate the DC‐link voltage ripple reduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
为了解决光伏(PV)系统在局部阴影条件下(PSC)的最大功率点跟踪问题,提出了一种基于改进粒子群算法(PSO)的快速最大功率点跟踪(MPPT)方法。与传统基于PSO的MPPT系统不同的是,采用了基于转换器电流动态行为的变量抽样时间策略(VSTS),并且为了更快速的实现最大功率点跟踪,引入三个重要因数,即:粒子数、收敛速度以及抽样时间。采用DSP平台对提出系统进行了具体实现和性能评估,实验结果显示相比其他类似系统,在不同条件(包括PSC)下,提出算法均能够实现速度跟踪且精确度较高。  相似文献   

14.
Recently announced low‐priced power purchase agreements (PPAs) for US utility‐scale photovoltaic (PV) projects suggest $50/MWh solar might be viable under certain conditions. To explore this possibility, this paper draws on an increasing wealth of empirical data to analyze trends in three of the most important PPA price drivers: upfront installed project prices, operations, and maintenance (O&M) costs, and capacity factors. Average installed prices among a sample of utility‐scale PV projects declined by more than one third (from $5.8/WAC to $3.7/WAC) from the 2007–2009 period through 2013, even as costlier systems with crystalline‐silicon modules, sun tracking, and higher inverter loading ratios (ILRs) have constituted an increasing proportion of total utility‐scale PV capacity (all values shown here are in 2013 dollars). Actual and projected O&M costs from a very small sample of projects appear to range from $20–$40/kWAC‐year. The average net capacity factor is 30% for projects installed in 2012, up from 24% for projects installed in 2010, owing to better solar resources, higher ILRs, and greater use of tracking among the more recent projects. Based on these trends, a pro‐forma financial model suggests that $50/MWh utility‐scale PV is achievable using a combination of aggressive‐but‐achievable technical and financial input parameters (including receipt of the 30% federal investment tax credit). Although the US utility‐scale PV market is still young, the rapid progress in the key metrics documented in this paper has made PV a viable competitor against other utility‐scale renewable generators, and even conventional peaking generators, in certain regions of the country. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

15.
为了更好的利用太阳能,自动跟踪系统越来越多的应用于太阳能行业中。基于可编程逻辑控制器(PLC)的太阳能电池板自动跟踪系统,包括硬件和软件两部分,其中硬件包括PLC输入输出端口、信号处理单元、驱动部分;软件包括PLC的控制和监控程序两部分。太阳能电池板自动跟踪系统使光伏电池板能实时跟踪太阳关照,从而最大限度的获得太阳能,有效地提高太阳能的利用率和光伏发电系统的效率,降低了光伏并网发电成本,具有理论研究意义和应用推广价值。  相似文献   

16.
光伏并网发电系统是光伏发电系统的发展趋势,而最大功率点跟踪技术是提高光伏发电效率的主要技术。本文在分析和研究了3种常用最大功率点跟踪方法优缺点的基础上,提出了一种集这3种常用方法优点的新方法,即综合优化法。在太阳能光伏转换系统中,通过具体实验比较了较大步长的扰动观察法,恒电压法和导纳增量法,还有本文中提出的综合优化法,通过对改进算法的仿真,以及与其他算法的比较,说明了这种改进算法的正确性,验证了这种算法的可行性及优越性。  相似文献   

17.
Tandem modules combining a III–V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one‐sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III–V cells is far too high for this approach to be competitive for one‐sun terrestrial power applications. We investigated the system‐level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III–V cells is substantially reduced, perhaps to less than the cost of Si cells. We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area‐related balance‐of‐system cost is high, such as for area‐constrained residential rooftop systems in the USA. When area‐related balance‐of‐system cost is lower, such as for utility‐scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single‐junction Si modules when III–V cells are expensive, and a system using tandem modules is more expensive than one using single‐junction III–V modules when III–V cells are inexpensive. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a novel maximum power point tracking (MPPT) method based on the grey wolf optimisation (GWO) technique for photovoltaic (PV) power generation systems. The proposed method utilises previous working duty cycles and their corresponding voltage and current data to compute the instantaneous DC impedance of a PV string. To determine the peak power characteristics of any PV string, the impedance variation of that PV string is used as an efficient shading factor. This shading factor simplifies the calculation of the GWO-MPPT algorithm to obtain multiple peak targets under partial shading conditions. Thus, the efficiency of the proposed power tracking technique can be improved considerably. The effectiveness of this method was validated through both simulation and hardware implementations. Results revealed that the search performance of five iterations of the proposed method was similar to that of ten iterations of a traditional GWO-MPPT method under normal conditions without shading. These results confirm the practicability of the proposed method in various applications.  相似文献   

19.
Achieving the maximum power output from photovoltaic (PV) modules is indispensable for the operation of grid‐connected PV power systems under varied atmospheric conditions. In recent years, the study of PV energy for different applications has attracted more and more attention because solar energy is clean and renewable. We propose an efficient direct‐prediction method to enhance the utilization efficiency of thin film PV modules by tackling the problem of tracking time and overcoming the difficulty of calculation. The proposed method is based on the p–n junction recombination mechanism and can be applied to all kinds of PV modules. Its performance is not influenced by weather conditions such as illumination or temperature. The experimental results show that the proposed method provides high‐accuracy estimation of the maximum power point (MPP) for thin film PV modules with an average error of 1.68% and 1.65% under various irradiation intensities and temperatures, respectively. The experimental results confirm that the proposed method can simply and accurately estimate the MPP for thin film PV modules under various irradiation intensities and temperatures. In future, the proposed method will be used to shed light on the optimization of the MPP tracking control model in PV systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a review of back‐tracking geometry not only for single axis but also for two‐axis tracking and analyses the corresponding energy gains. It compares the different back‐tracking strategies with the ideal tracking in terms of energy yield concluding, on the one hand, that back‐tracking is more useful for single horizontal axis than for the single vertical one, and on the other hand, that back‐tracking is more efficient when applied in the primary axis of a two‐axis tracker. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号