首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4,6‐Diazido‐N‐nitro‐1,3,5‐triazine‐2‐amine (DANT) was prepared with a 35 % yield from cyanuric chloride in a three step process. DANT was characterized by IR and NMR spectroscopy (1H, 13C, 15N), single‐crystal X‐ray diffraction, and DTA. The crystal density of DANT is 1.849 g cm−3. The cyclization of one azido group and one nitrogen atom of the triazine group giving tetrazole was observed for DANT in a dimethyl sulfoxide solution using NMR spectroscopy. An equilibrium exists between the original DANT molecule and its cyclic form at a ratio of 7 : 3. The sensitivity of DANT to impact is between that for PETN and RDX, sensitivity to friction is between that for lead azide and PETN, and sensitivity to electric discharge is about the same as for PETN. DANT′s heat of combustion is 2060 kJ mol−1.  相似文献   

2.
1‐Azido‐2‐nitro‐2‐azapropane ( 1 ) was synthesized in high yield from 1‐chloro‐2‐nitro‐2‐azapropane and sodium azide. 1‐Nitrotetrazolato‐2‐nitro‐2‐azapropane ( 2 ) was synthesized in high yield from 1‐chloro‐2‐nitro‐2‐azapropane and silver nitrotetrazolate. The highly energetic new compounds ( 1 and 2 ) were characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 14N), elemental analysis and low‐temperature single crystal X‐ray diffraction. 1‐Azido‐2‐nitro‐2‐azapropane ( 1 ) represents a covalently bound liquid energetic material which contains both a nitramine unit and an azide group in the molecule. 1‐Nitrotetrazolato‐2‐nitro‐2‐azapropane ( 2 ) is a covalently bound room‐temperature stable solid which contains a nitramine group and a nitrotetrazolate ring unit in the molecule. Compounds 1 and 2 are hydrolytically stable at ambient conditions. The impact sensitivity of compound 1 is very high (<1 J) whereas compound 2 is less sensitive (<6 J).  相似文献   

3.
Attempts to prepare 5‐chloro‐6‐nitrobenzodifuroxan from the reaction of 5,7‐dichloro‐4,6‐dinitrobenzofuroxan with sodium azide have failed and, surprisingly, the formation of the powerful hydrogen‐free explosive – benzotrifuroxan (BTF) through spontaneous cyclization at 0 °C was observed (yield: 75 %). Importantly, BTF was synthesized avoiding the isolation and the heating of the hazardous intermediate trinitro‐triazidobenzene. The structure of BTF was confirmed by IR spectroscopy, elemental analysis, and melting point measurement.  相似文献   

4.
In this work, 2‐(3‐p‐bromophenyl‐3‐methylcyclobutyl)‐2‐hydroxyethylmethacrylate (BPHEMA) [monomer] was synthesized by the addition of methacrylic acid to 1‐epoxyethyl‐3‐bromophenyl‐3‐methyl cyclobutane. The monomer and poly(BPHEMA) were characterized by FT‐IR and [1H] and [13C]NMR. Average molecular weight, glass transition temperature, solubility parameter, and density of the polymer were also determined. Thermal degradation of poly[BPHEMA] was studied by thermogravimetry (TG), FT‐IR. Programmed heating was carried out at 10 °C min−1 from room temperature to 500 °C. The partially degraded polymer was examined by FT‐IR spectroscopy. The degradation products were identified by using FT‐IR, [1H] and [13C]NMR and GC‐MS techniques. Depolymerization is the main reaction in thermal degradation of the polymer up to about 300 °C. Percentage of the monomer in CRF (Cold Ring Fraction) was estimated at 33% in the peak area of the GC curve. Intramolecular cyclization and cyclic anhydride type structures were observed at temperatures above 300 °C. The liquid products of the degradation, formation of anhydride ring structures and mechanism of degradation are discussed. © 1999 Society of Chemical Industry  相似文献   

5.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

6.
The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016  相似文献   

7.
The energetic material, 3‐nitro‐1,5‐bis(4,4′‐dimethyl azide)‐1,2,3‐triazolyl‐3‐azapentane (NDTAP), was firstly synthesized by means of Click Chemistry using 1,5‐diazido‐3‐nitrazapentane as main material. The structure of NDTAP was confirmed by IR, 1H NMR, and 13C NMR spectroscopy; mass spectrometry, and elemental analysis. The crystal structure of NDTAP was determined by X‐ray diffraction. It belongs to monoclinic system, space group C2/c with crystal parameters a=1.7285(8) nm, b=0.6061(3) nm, c=1.6712(8) nm, β=104.846(8)°, V=1.6924(13) nm3, Z=8, μ=0.109 mm−1, F(000)=752, and Dc=1.422 g cm−3. The thermal behavior and non‐isothermal decomposition kinetics of NDTAP were studied with DSC and TG‐DTG methods. The self‐accelerating decomposition temperature and critical temperature of thermal explosion are 195.5 and 208.2 °C, respectively. NDTAP presents good thermal stability and is insensitive.  相似文献   

8.
Silver nanoparticles were coated onto cotton fabrics with 3‐mercaptopropyltrimethoxysilane (3‐MPTMS). The coating process was accomplished by soaking the cotton fabrics into silver colloid/3‐MPTMS solution at 43°C for 90 min. The coated fabrics were characterized by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). SEM images showed a layer of silver nanoparticles and 3‐MPTMS on cotton. The XPS data showed that distinguishable binding energy peaks of Ag 3d, Si 2p, Si 2s, S 2p were 368/374, 102, 153, and 162 eV, respectively, which confirms the existence of silver and 3‐MPTMS on cotton fabrics. The treated cotton fabrics showed prominent antimicrobial effectiveness against Staphylococcus aureus (ATCC 6538) and Klebsiella pneumonia (ATCC 4352). Furthermore, the laundry test showed that 66% of silver nanoparticles were retained after five washing cycles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The azido‐tetrazolo tautomerizations of 3,6‐diazido‐1,2,4,5‐tetrazine (DIAT) in different solvents were investigated with HPLC and 13C NMR spectroscopy. 6‐Amino‐tetrazolo[1,5‐b]‐1,2,4,5‐tetrazine (ATTZ) was irreversibly formed as the final product by azido‐cyclization following N2 elimination from one of the azido substituents at room temperature in DMSO. The structure of ATTZ was characterized by X‐ray crystallography; differential scanning calorimetry (DSC), mass spectrometry, as well as IR and 1H NMR and 13C NMR spectroscopy. The crystal density was found to be 1.272 g cm−3. DSC result suggested that ATTZ with the melting point of 84 °C strongly decomposes with explosion at 198 °C, which can be regarded as a primary explosive.  相似文献   

10.
A novel bis(ether amine) monomer, 5,5′‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]‐4,7‐methanohexahydroindan ( 2 ), was synthesized through the nucleophilic aromatic substitution reaction of 5,5′‐bis‐(4‐hydroxyphenyl)‐4,7‐methanohexahydroindan with 2‐chloro‐5‐nitrobenzotrifluoride to yield the intermediate dinitro compound, followed by catalytic reduction with hydrazine and Pd/C. A series of polyimides were synthesized from 2 and various aromatic dianhydrides using a standard two‐stage process with chemical or thermal imidization of poly(amic acid). All of these polymer films were soluble in amide‐type solvents above 10% w/v, had tensile strengths of 97–117 MPa, and the 10% weight loss temperature was above 464 °C with their residues exceeding 46% at 800 °C in nitrogen. Compared with the non‐fluorinated polyimides, the fluorinated series were observed to have lower dielectric constants (2.92–3.28 at 1 MHz) and lower moisture absorptions (0.15–0.43 wt%) as well as lower color intensity and better solubility. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

12.
In order to improve the water solubility of sugar‐based surfactants, alkyl β‐d‐ xylopyranosides, novel sugar‐based surfactants, 1,2‐trans alkoxyethyl β‐d‐ xylopyranosides, with alkyl chain length n = 6–12 were stereoselectively prepared by the trichloroacetimidate method. Their properties including hydrophilic–lipophilic balance (HLB) number, water solubility, surface tension, emulsification, foamability, thermotropic liquid crystal, and hygroscopicity were investigated. The results indicated that their HLB number decreased with increase of alkyl chain, the water solubility improved since the hydrophilic oxyethene (─OCH2CH2─) fragment was introduced. The dissolution process was entropy driven at 25–45 °C for alkyl chain length n = 6–10. Octyloxyethyl β‐d‐ xylopyranoside had the best foaming ability. Nonyloxyethyl β‐d‐ xylopyranoside had the best foam stability and the emulsifying ability was better in toluene/water system than in rapeseed oil/water system. The surface tension of in aqueous solution dropped to 27.8 mN m?1 at the critical micelle concentration, and it also showed the most distinct thermotropic liquid phases with cross pattern texture upon heating and the fan schlieren texture on cooling. Hexyloxyethyl β‐d‐ xylopyranoside possessed the strongest hygroscopicity. Based on the effective improvement of water solubility, the prepared alkoxyethyl β‐d‐ xylopyranosides showed excellent surface activity and are expected to develop their practical application as a class of novel sugar‐based surfactants.  相似文献   

13.
Microstructured Ag‐based catalysts were developed by galvanically depositing Ag onto 80‐μm‐Cu‐fibers for the gas‐phase oxidation of alcohols. By taking advantages including large voidage, open porous structure and high heat/mass transfer, as‐made catalysts provided a nice combination of high activity/selectivity and enhanced heat transfer. The best catalyst was Ag‐10/80‐Cu‐fiber‐400 (Ag‐loading: 10 wt%; Cu‐fiber pretreated at 400 °C in air), being effective for oxidizing acyclic, benzylic and polynary alcohols. For benzyl alcohol, conversion of 94% was achieved with 99% selectivity to benzaldehyde at 300 °C using a high WHSV of 20 h?1. Computational fluid dynamics (CFD) calculation and experimental result illustrated significant enhancement of the heat transfer. The temperature difference from reactor wall to central line was about 10–20 °C for the Ag‐10/80‐Cu‐fiber‐400, much lower than that of 100–110 °C for the Ag‐10‐Cu‐2/Al2O3 at equivalent conversion and selectivity. Synergistic interaction between Cu2O and Ag was discussed, being assignable to the activity improvement. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1045–1053, 2014  相似文献   

14.
A series of aromatic polyamides containing an s‐triazine ring with thiophenoxy linkages was synthesized from two new diacids, namely 2,4‐bis‐(4‐carboxyphenoxy)‐6‐thiophenoxy‐s‐triazine and 2,4‐bis‐(3‐carboxyphenoxy)‐6‐thiophenoxy‐s‐triazine, and commercially available aromatic diamines by using Yamazaki's phosphorylation reaction. The polyamides were obtained in good yields and were characterized by solubility tests, viscosity measurements, FTIR, 1H and 13C NMR spectroscopy, X‐ray diffraction studies and thermogravimetric analysis. The polyamides were found to have inherent viscosities in the range of 0.35 to 0.56 dl g?1 in N,N‐dimethylacetamide (DMAc) at 30 ± 0.1 °C. All the polyamides were readily soluble in solvents such as DMAc, N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF) and m‐cresol. Thermogravimetric analysis of the polyamides indicated no weight loss below 345 °C under a nitrogen atmosphere. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
A new monomer 1,1‐bis(4‐amino‐3‐mercaptophenyl)‐4‐tert‐butylcyclohexane dihydrochloride, bearing the bulky pendant 4‐tert‐butylcyclohexylidene group, was synthesized from 4‐tert‐butylcyclohexanone in three steps. Its chemical structure was characterized by 1H NMR, 13C NMR, MS, FTIR, and EA. Aromatic poly(bisbenzothiazole)s (PBTs V) were prepared from the new monomer and five aromatic dicarboxylic acids by direct polycondensation. The inherent viscosities were in the range of 0.63–2.17 dL/g. These polymers exhibited good solubility and thermal stability. Most of the prepared PBTs V were soluble in various polar solvents. Thermogravimetric analysis showed the decomposition temperatures at 10% weight loss that were in the range of 495–534°C in nitrogen. All the PBTs V, characterized by X‐ray diffraction, were amorphous. The UV absorption spectra of PBTs V showed a range of λmax from 334 to 394 nm. All the PBTs V prepared had evident fluorescence emission peaks, ranging from 423 to 475 nm with different intensity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2000–2008, 2006  相似文献   

16.
A series of novel ternary‐copolymer of fluorinated polyimides (PIs) were prepared from 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (pBATB), commercially available aromatic dianhydrides, and aromatic diamines via a conventional two‐step thermal or chemical imidization method. The structures of all the obtained PIs were characterized with FTIR, 1H‐NMR, and element analysis. Besides, the solubility, thermal stability, mechanical properties, and moisture uptakes of the PIs were investigated. The weight‐average molecular weight (Mw) and the number‐average molecular weight (Mn) of the PIs were determined using gel‐permeation chromatography (GPC). The PIs were readily dissolved not only in polar solvents such as DMF, DMAc, and NMP, but also in some common organic solvents, such as acetic ester, chloroform, and acetone. The glass transition temperatures of these PIs ranged from 201 to 234°C and the 10% weight loss temperatures ranged from 507 to 541°C in nitrogen. Meanwhile, all the PIs left around 50% residual even at 800°C in nitrogen. The GPC results indicated that the PIs possessed moderate‐to‐high number‐average molecular weight (Mn), ranging from 9609 to 17,628. Moreover, the polymer films exhibited good mechanical properties, with elongations at break of 8–21%, tensile strength of 66.5–89.8 MPa, and Young's modulus of 1.04–1.27 GPa, and low moisture uptakes of 0.54–1.13%. These excellent combination properties ensure that the polymer could be considered as potential candidates for photoelectric and microelectronic applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

18.
A novel trifluoromethyl‐containing aromatic diamine monomer, 2,5‐bis (4‐amino‐2‐trifluoromethylphenoxy)biphenyl (2), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and phenylhydroquinone in the presence of potassium carbonate to yield the intermediate dinitro compound (1), followed by catalytic reduction with hydrazine and Pd/C. A series of fluorinated polyimides (code 5a–f) were synthesized from diamine (2) with six commercially available aromatic dianhydrides using a standard two‐stage process with thermal or chemical imidization of poly(amic acid). Most of fluorinated polyimides showed good solubility at a concentration of 5–10 wt % and even in pyridine and dioxane. For improving solubility of 5c, copolyimides (5c/a–f) were also prepared from 2 and a pair of dianhydrides (3c/a–f), which were mixed in the molar ratio 1:1. All the polyimide films had a tensile strength in the range from 73 to 112 MPa, an elongation at break within a range of 9–23%, and an initial modulus in the range of 1.6–2.2 GPa. These polyimides exhibited glass transition temperatures of 220–267°C and showed no significant decomposition below 500°C under either nitrogen or air atmosphere. In comparison with the analogous nonfluorinated polyimides based on 2,5‐bis (4‐aminophenoxy) biphenyl (2′), the fluorinated polyimides showed better solubility as well as reduced color intensity, lower dielectric constant, and moisture absorption. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4101–4110, 2006  相似文献   

19.
1,4‐Dimethyl‐5‐aminotetrazolium 5‐nitrotetrazolate ( 2 ) was synthesized in high yield from 1,4‐dimethyl‐5‐aminotetrazolium iodide ( 1 ) and silver 5‐nitrotetrazolate. Both new compounds ( 1, 2 ) were characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 14N, 15N), elemental analysis and single crystal X‐ray diffraction. 1,4‐Dimethyl‐5‐aminotetrazolium 5‐nitrotetrazolate ( 2 ) represents the first example of an energetic material which contains both a tetrazole based cation and anion. Compound 2 is hydrolytically stable with a high melting point of 190 °C (decomposition). The impact sensitivity of compound 2 is very low (30 J), it is not sensitive towards friction (>360 N). The molecular structure of 1,4‐dimethyl‐5‐aminotetrazolium iodide ( 1 ) in the crystalline state was determined by X‐ray crystallography: orthorhombic, Fddd, a=1.3718(1) nm, b=1.4486(1) nm, c=1.6281(1) nm, V=3.2354(5) nm3, Z=16, ρ=1.979 g cm−1, R1=0.0169 (F>4σ(F)), wR2 (all data)=0.0352.  相似文献   

20.
Summary: Temperature‐sensitive P(DEAEMA‐co‐DMAAm) cryogels with five different DMAAm contents were synthesized via a two‐step polymerization method, the initial polymerization being conducted for various times at 22 °C, followed by polymerization at ?26 °C for 24 h. The influence of the first‐step time and the content of DMAAm on the swelling ratio and network parameters such as the polymer/solvent interaction parameter, the average molecular mass between crosslinks, and the mesh size of the cryogels were reported and discussed. The swelling studies indicated that the swelling increased in the following order: 22C45 > 22C30 > 22C15 > 22C0. The cryogels exhibited swelling/deswelling transitions (reentrant phenomena) in water depending on temperature. These properties were attributed to the macroporous and regularly arranged network of the cryogels. Scanning electron microscope graphs reveal that the macroporous network structure of the cryogels can be adjusted by applying a two‐step polymerization.

Chemical structure of the P(DEAEMA‐co‐DMAAm) cryogels.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号