首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
采用碳酸共沉淀法得到了一种新型阴极材料LaNi0.8Cu0.2O3(LNC-82),对其进行了X射线衍射和扫描电镜的表征,并采用复合材料[Ce0.8Sm0.2O2-δ(SDC)和碳酸盐(Na2CO3 Li2CO3)]为电解质,分别以NiO和LNC-82为阳极和阴极材料,考察了在低温(400~550℃)下这种钙钛矿型阴极材料的电化学性能。实验结果表明,运用碳酸共沉淀法得到了LNC-82前驱体粉末,经过860℃煅烧2h,得到了粒度均匀的粉末,其粒径约为400~500nm。单体电池在550℃下的最大比功率和短路电流分别为390.6mW/cm2和1140.6mA/cm2。  相似文献   

2.
郭为民  刘江 《电源技术》2008,32(3):180-183
利用离心法成膜工艺在多孔Ni-YSZ阳极基体上制备8%(摩尔分数)YSZ电解质层,在1400℃共烧结,得到致密的YSZ膜和多孔结构的阳极。用苷氨酸-硝酸盐燃烧法合成超细阳极与阴极材料。其中,NiO-YSZ复合粉体用于阳极,La0.6Sr0.4Co0.2Fe0.8O3(LSCF)和30%(质量分数)Ce0.9Gd0.1O1.95(GDC)复合材料用作阴极。以氢气为燃料,研究了500~800℃时Ni-YSZ阳极支撑体固体氧化物燃料电池(SOFC)单电池的性能。结果表明在500℃时电池开路电压(OCV)达1.10V,800℃时短路电流密度达1113mA/cm2,最大比功率为296mW/cm2。通过交流阻抗图谱分析,认为电解质欧姆电阻是影响电池性能的主要因素。  相似文献   

3.
采用干压方法制备双层阳极支撑的以BCY20(BaCe0.8Y0.2O3-δ)为电解质的固体氧化物燃料电池.双层阳极的质量分数分别为60% NiO 40% SDC(Ce0.7Sm0.2O2-δ)和30% NiO 70% SDC.阴极采用质量分数分别为85% LSCF(La0.9Sr0.1Co0.2Fe0.8O3-δ) 15% GDC(Ce0.8Gd0.2O2-δ)复合阴极.在400~600 ℃的范围内,用天然气为燃料气,氧气为氧化气,50℃为间隔,测试并比较了该电池与单层阳极支撑电池(阳极质量分数为50% NiO 50% SDC、阴极为85%LSCF 15% GDC复合阴极、电解质为BCY20)的性能.用扫描电镜(SEM)分别分析单电池阳极、阴极及电解质的型貌.实验表明:电池具有良好的微结构,在测试条件下双层阳极支撑电池具有更优的性能.600 ℃测得电池最大比功率为55 mW/cm2,电流密度为253 mA/cm2.  相似文献   

4.
ITSOFC阴极材料Ln-B-Co-O的合成与性能   总被引:1,自引:0,他引:1  
以混合稀土、SrCO3、CaCO3及Co2O3为原料,在1 200℃下烧结制备了Ln-B-Co-O(Ln为混合稀土,B=Sr,Ca)复合氧化物.并采用TG-DSC、XRD和直流四探针等方法进行了分析.混合稀土促进了碳酸盐在700~900℃的分解,新相Ln0.7Sr0.3CoO3-d在1 100℃时基本形成.Ln-B-Co-O复合氧化物为CeO2立方萤石相与钙钛矿两相,St2 易与稀土中的CeO2反应形成钙钛矿,Ca2 易与La3 发生取代.Ln-Ca-Co-O的电导率大于Ln-Sr-Co-O,在1 200 ℃下烧结3 h的所有样品的电导率,在340℃时达到最大值,在500~800℃时均超过500 S/cm.  相似文献   

5.
复掺杂钴铁酸盐的制备及性能   总被引:1,自引:0,他引:1  
于洪浩  高文元  孙俊才 《电池》2005,35(3):185-187
用金属硝酸盐,通过柠檬酸法合成了中温固体氧化物燃料电池阴极材料La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF)粉末.用热重-差热研究了LSCCF的形成过程.XRD测试表明:前驱体800℃处理3 h,已形成六方钙钛矿结构.样品的电导率随着烧结温度的升高和Ca2 含量的减少而变大,在500~800℃范围内,大于500S/cm,高于固相合成法的电导率最大值100S/cm.XRD和SEM测试表明:样品与电解质Ce0.8Sm0.2O2的化学相容性好.  相似文献   

6.
从粒径分布、电导率、活化能、致密性及制备的模拟电池的放电性能等方面,对8 mol%Y2O3稳定的ZrO2(8YSZ)(TOSOH 8YSZ和JC 8YSZ)作为固体氧化物燃料电池(SOFC)电解质进行了比较.结果表明:TOSOH 8YSZ的平均粒径比JC 8YSZ小1.20 μm;TOSOH 8YSZ在1 500℃下烧结的活化能比JC 8YSZ低2.68kj/mol,在800℃时的电导率高0.003 2 S/cm.以TOSOH 8YSZ为电解质的模拟电池,在800℃时的最大功率密度比JC 8YSZ为电解质的高45.45%.SEM测试表明,在1 450~1 500℃下烧结制备的TOSOH 8YSZ的电解质膜更致密.  相似文献   

7.
采用钐掺杂的氧化铈(SDC)-碳酸盐复合物作为低温固体氧化物燃料电池电解质。分别采用燃烧法和共沉淀法制备SDC,记为NSDC和CSDC。将这两种SDC分别与Li2CO3-Na2CO3二元共熔物复合制备了SDC-碳酸盐复合电解质材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电导率测试对两种复合电解质材料的结构、形貌和电性能进行了表征,并考察了燃料电池输出性能。结果表明,氧化物的制备方法影响复合电解质的形貌和电性能;复合大大提高了电解质的电导率,复合电解质的电导率在碳酸盐熔融点附近突然增大;NSDC-碳酸盐复合物具有更高的电导率,以H2和空气为燃料和氧化气体的电池性能测试显示,600℃时开路电压为1.02V,最大比功率为473mW/cm2。  相似文献   

8.
为降低制备阴极材料的成本、促进中温固体氧化物燃料电池(ITSOFC)的工业化进程,采用混合稀土作为主要原料.外加SrCO3、CO2O3固相法制备了Ln0.7Sr0.3CoO3-δ(简:LnSC,Ln为混合稀土)复合氧化物.TG-DSC、XRD对LnSC材料的合成过程以及不同温度下烧结行为进行了研究,并考察了LnSC材料的电性能.结果表明:混合稀土促进了SrCO3在700~950 ℃的分解反应,同时在1100℃时新相Ln07Sr0.3CoO3-δ基本形成.1200℃烧结4 h后合成产物为CeO2立方萤石相与钙钛矿相的共存.该材料电导率在340℃时达到最大值638 S/cm,500~800 ℃时,电导率超过500 S/cm,其电导活化能为7.86 kJ/mol.满足ITSOFC对阴极材料的要求.  相似文献   

9.
研究了La_2Ni_(0.8)Fe_(0.2)O_(4+δ)(LNF-02)-La_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_(3-δ)(LS CF)复合阴极材料(LNF-02-x LS CF,10≤x≤40)的电性能、电化学性能、热膨胀性能。研究结果表明,LNF-02、LSCF、SDC之间的化学相容性良好。LNF-02-x LSCF复合阴极材料的电导率在600~800℃范围内均高于100 S/cm,且随着LSCF复合量的增加而逐渐升高。1 000℃煅烧制备的复合阴极与SDC电解质接触良好,表现出最低的极化电阻。LSCF的最佳复合量为20%(x=20),此时LNF-02-20LSCF的热膨胀系数为14.36×10~(-6) K~(-1)。1 000℃煅烧制备的LNF-02-20LSCF复合阴极在750℃测试的界面极化电阻为0.68Ω·cm~2。结果显示,LNF-02-20LS CF复合阴极材料有望成为新型IT-S OFC阴极材料。  相似文献   

10.
《中国电力》2009,42(1)
熔融碳酸盐燃料电池(MCFC:molten carbonate fuel cell)的电解质通常为Li2CO3与K2CO3或Li2CO3与Na2CO3的混合盐.在电池的工作状态下,熔融碳酸盐溶液在微孔的LiAlO2上完全浸渍.使得整个隔膜材料既导电又隔绝阴极气体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号