首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
锂硫电池因其高能量密度和低成本而成为最有发展前景的电化学储能器件之一。然而,多硫化物的“穿梭效应”、硫导电率低是锂硫电池商业化面临的主要挑战。本工作中,以Fe(NO)3·9H2O为铁源,NH4F为表面活性剂,通过简单的水热及煅烧处理制备了Fe2O3纳米棒修饰炭布(CC)的柔性Fe2O3/CC复合材料。其中,Fe2O3中介孔的存在有利于电解质的渗透和充放电过程中锂离子的传输和扩散,同时其密集阵列暴露出的丰富活性位点可以实现多硫化物的高效吸附和快速转化,降低多硫化物的穿梭效应。电化学分析显示:Fe2O3/CC正极在0.1 C(1 C=1 672 mA g-1)的电流密度下具有1 250 mAh g-1的高放电比容量,经100圈循环后比容量保持在789 mAh g-1。在2 C的倍率下循环...  相似文献   

2.
Fe3O4被认为是一种储锂性能优异的锂离子电池负极材料,但目前仍存在导电性差和充放电过程体积膨胀问题。文中以L-精氨酸、对苯二甲醛和九水硝酸铁为原料,通过溶剂热反应得到铁离子掺杂L-精氨酸聚合物(W-Fe3O4@NC precursors),随后高温热解制备了杨梅状碳包覆四氧化三铁(W-Fe3O4@NC)复合负极材料。对W-Fe3O4@NC的形貌、表面化学结构、孔隙率和在锂离子电池负极中的电化学性能进行了表征。结果表明,得益于独特的杨梅状形貌、有益的氮掺杂、高度分散的Fe3O4纳米微粒和均匀的碳包覆,W-Fe3O4@NC在1 A/g电流密度下循环800圈后比容量高达815.1 m Ah/g,在5 A/g的大电流密度下,比容量仍保持在232 mAh/g,循环稳定性和倍率性能显著优于纯碳材料(NC)和市售Fe3  相似文献   

3.
在乙醇胺和水组成的混合溶剂中, Mn(Ac)2与氧化石墨烯一步反应得到还原石墨烯(RGO)与黑锰矿纳米颗粒(Mn3O4)组成的复合材料Mn3O4@RGO。以Mn3O4@RGO为正极, RGO为负极, 组装得到了具有优良储能性能的非对称型超级电容器Mn3O4@RGO//RGO。基于活性物质的总质量, 电容器的最大能量密度可达21.7 Wh/kg, 相应的功率密度为0.5 kW/kg; 同时, 最大功率密度为8 kW/kg时, 对应的能量密度为11.1 Wh/kg。Mn3O4@RGO//RGO还表现出良好的循环稳定性, 在经历5000次循环后, 比电容依然保持88.4%。电容器的良好储能性能可归因于在RGO表面生长的高密度Mn3O4纳米颗粒和RGO的良好导电性能。  相似文献   

4.
本论文发展了一种简单、低成本的一步"同步还原-自组装(SRSA)"水热法并制备了自组装Fe3O4分级结构的微球(Fe3O4HMSs).在合成过程中,仅使用甘油、水和铁氰化钾作为反应物,而无需任何其他还原剂、表面活性剂或添加剂即可获得自组装Fe3O4HMSs.其中,K3[Fe(CN)6]和甘油是合成自组装Fe3O4HMSs的两个重要因素.自组装Fe3O4HMSs可以作为高性能的锂离子存储材料,在0.5Ag-1的电流密度下,经过270次循环后比容量大于1000 mA hg-1.进一步充电和放电结果表明自组装Fe3O4HMSs表现出良好的可逆性能(放电比容量维持在1000mA h g-1以上)和循环稳定性(700次循环).此外,作为多功能材料,自组装Fe3O4HMSs的饱和磁化强度达到99.5 emu g-1,其可以进一步作为高效、磁性可回收的催化剂用于高效的硝基化合物加氢反应.  相似文献   

5.
碳包覆策略是能有效解决锂离子电池负极用过渡金属氧化物(TMO)材料在充放电过程中体积膨胀/收缩造成的粉化难题的一种有效途径。采用生物基可食用冰粉作为碳源与草酸高铁铵的水凝胶作为前驱物,经一步高温热解制备氮掺杂的冰粉基碳包覆Fe3O4,采用XRD、SEM、TEM、XPS、TGA、拉曼光谱、恒电流充放电测试、循环伏安和电化学阻抗谱等方法对样品的形貌、结构和电化学性能进行研究。结果表明,该方法可快速大量制备氮掺杂碳包覆Fe3O4多孔复合材料(N-C@Fe3O4),通过调整原料配比和热处理条件,获得优异的电化学性能。N-C@Fe3O4-5作为锂离子电池负极材料具有良好的循环稳定性(在0.1 A/g电流密度下循环下80圈保持762.74 mAh/g比容量)和较高的倍率性能。相关机理研究表明N-C@Fe3O4复合材料良好倍率性能主要来源于赝电容容量的贡献。复合材料优异的电化学性能是...  相似文献   

6.
通过一种简便的方法制备氧空位缺陷的氢化TiO2包覆核壳结构C/Fe3O4@rGO(H-TiO2/C/Fe3O4@rGO)复合材料,作为锂离子电池(lithium-ion batteris, LIBs)高性能阳极材料。TiO2在Li+脱嵌过程中体积膨胀系数约为4%,可缓解Fe3O4在充放电过程中的体积膨胀,提高阳极材料结构的稳定性。同时,通过氢化处理改善TiO2较低的电导率(约1×10-12 S·m-1)。H-TiO2/C/Fe3O4@rGO在0.3 A·g-1的电流密度下循环200周次后比容量为867 mAh·g-1,在1 A·g-1的电流密度下循环700周次的比容量为505...  相似文献   

7.
通过电化学还原法制备纳米Fe3O4-还原氧化石墨烯复合修饰玻碳(Fe3O4-rGO/GCE)电极,用于多巴胺(DA)的检测。采用SEM、TEM和循环伏安对纳米Fe3O4-rGO复合材料进行表征。在pH为7.0的磷酸盐缓冲液(PBS)中,采用循环伏安法研究了DA在纳米Fe3O4-rGO/GC上的电化学行为。实验结果表明,较裸GC电极和rGO修饰(rGO/GC)电极,由于纳米Fe3O4与rGO的协同作用,纳米Fe3O4-rGO/GC显著增大了Fe3O4-rGO/GC复合材料电极电化学活性面积和氧化峰电流强度ipa。DA的浓度在6.0×10-8~2.0×10-6 mol/L和2.0×10-6~8.0×10-5 mol/L范围内,与氧化峰电流强度ipa呈良好的线性关系,检出限达4.0×10-9 mol/L(信噪比S/N=3)。抗坏血酸和尿酸共存物几乎不干扰DA的测定,选择性高。Fe3O4-rGO/GC修饰电极用于盐酸DA注射液中的DA含量测定,获得结果较好,回收率为97.1%~103.9%。  相似文献   

8.
中温固体氧化物燃料电池(IT-SOFC)有助于国家的碳中和战略,但其阴极材料难以兼顾热兼容性和催化活性。为此,基于多元素耦合的高熵策略,本研究合成了高熵阴极材料GdBa(Fe0.2Mn0.2Co0.2Ni0.2Cu0.2)2O5+δ(HE-GBO),具有双过氧化物结构,与Gd0.1Ce0.9O2-δ(GDC)有良好的化学兼容性,协调了与催化活性之间的平衡性。采用HE-GBO阴极的对称电池在800℃下的极化电阻(Rp)为1.68?·cm2,而HE-GBO-GDC(质量比7:3)复合阴极的Rp因引入GDC而显著降低(800℃下Rp为0.23?·cm2)。采用HE-GBO和HE-GBO-GDC阴极组装树枝状微通道阳极支撑单电池,在800℃的最大功率密度分别达到972....  相似文献   

9.
锰基氧化物是一类非常有潜力的水系锌离子电池正极材料, 但是在充放电循环过程中面临结构坍塌而导致容量快速衰减。本研究结合微波水热法和原子层沉积法在碳布上构筑了具有核壳结构的Mn3O4@ZnO纳米片阵列, 经优化ZnO的包覆厚度后, Mn3O4充放电100个循环的容量保持率可以提高至60.3%。ZnO包覆层可以有效维持Mn3O4的结构稳定性, 并且避免其与电解液直接接触而被腐蚀溶解, 从而改善材料的储锌电化学性能。这种核壳状结构的设计为发展高性能水系锌离子电池锰基氧化物正极材料提供了一种有效的思路。  相似文献   

10.
采用水热法制得粒径为150~300 nm、分散性良好的Fe3O4磁性内核颗粒, 经APTES对Fe3O4进行氨基化修饰后, 用NaBH4原位还原H2PtCl6制得Fe3O4@Pt核壳结构的DMFC阳极催化剂, 对其进行TEM、XRD、XPS、EDS和催化活性及稳定性表征, 结果表明: 制得的Fe3O4@Pt颗粒表面主要由Pt组成, 形成了完整包覆一层Pt的Fe3O4@Pt粒子, 颗粒粒径为200~300 nm, Fe与Pt的原子比近似为3:1; Fe3O4@Pt具有良好的稳定性, 在循环100圈后, Fe3O4@Pt修饰的玻碳电极在新配制的0.5 mol/L H2SO4+1 mol/L CH3OH溶液中循环第101圈的峰电流密度是第一圈的94.51%; 纯Pt的峰电流密度仅为Fe3O4@Pt的90.73%, Fe3O4和Pt之间存在电荷传递, 从而提高了Fe3O4@Pt的催化活性。因此Fe3O4@Pt有望取代Pt作为DMFC的阳极催化剂。  相似文献   

11.
过渡金属氧化态调控工程是一种很有前景的改善电极材料的氧化还原活性、增加活性位点的策略.本文提出了一种简单的三乙醇胺辅助自模板法,制备了一种由交错钴硫化物纳米片(CoxSy-T NSs)组装而成的独特的三维蜂窝状网络结构.有趣的是,我们首次发现在该体系中,三乙醇胺可以有效地增加目标产物中的高价态Co3+的比例.CoxSy-T NSs电极具有高含量的Co3+和三维网络结构,使得其在5 A g-1的电流密度下表现出351 mA h g-1(2635 F g-1)的最大比容量和优异的循环稳定性.此外,由CoxSy-T NSs和活性炭(AC)电极组装的固态不对称超级电容器在0.81 kW kg-1功率密度下展现出81.62 W h kg-1的高能量密度和卓越的长周期循环稳定性,7000次循环后仍有96.2%的容量保持率.该结果证明同时调控高价态的金属物种并构筑三维网络结构是一种简单而有效的制备用于能源存储与转换的高活性电极材料的策略.  相似文献   

12.
混合型纳米电极材料的合理设计及合成对于其不同的应用具有重要意义,尤其是对于可用于下一代电动汽车和电子设备供电的高效纳米结构超级电容器(SCs)储能器件.本文报道了一种简便可控合成核-壳Ni3S2@NiWO4纳米阵列的方法,并将其用于混合超级电容器的独立电极.在5 mA cm-2的条件下,所制备的Ni3S2@NiWO4独立电极表现出高达2032μA h cm-2的面积容量;即使电流密度增至50 mA cm-2,其容量保留率仍为63.6%.更重要的是,在功率密度为3.128 mW cm-2时,该Ni3S2@NiWO4纳米阵列混合超级电容器仍表现出1.283 mW h cm-2的最大能量密度;而在能量密度为0.753 mW h cm-2时,该超级电容器表现出的最大功率密度为41.105 mW cm-2.此外,该混合超级电容器在连续10,000次循环后仍能保持89.6%的原始容量,从而进一步证明其优异的稳定性.本研究为合理设计各种核壳金属纳米结构提供了便捷途径,有助于促进其在高性能储能器件领域的广泛应用.  相似文献   

13.
高熵氧化物以其独特的结构和潜在的应用前景引起了越来越多的关注。本工作采用简单易行的固相反应法制备了M3O4(M=FeCoCrMnMg)高熵氧化物粉体, 采用不同手段对粉体进行表征, 并采用涂覆法制备了 M3O4/泡沫镍(M3O4/NF)复合电极, 研究其超电容性能。结果表明, 随着煅烧温度升高, Fe2O3(H)/Co3O4(S)/Cr2O3(E)和Mn2O3(B)相继固溶进入尖晶石主晶相晶格; 在900 ℃煅烧2 h所得M3O4粉体的平均粒径为0.69 μm, 具有单一尖晶石结构(面心立方, Fd-3m, a=0.8376 nm), 且Fe、Co、Cr、Mn和Mg五种元素在晶粒内均匀分布, 呈典型的高熵氧化物特征。此外, M3O4/NF复合电极在1 mol/L KOH的电解液中, 当电流密度为1 A·g-1时, 其质量比电容达到193.7 F·g-1, 可见M3O4高熵氧化物在超级电容器电极材料领域具有良好的应用前景。  相似文献   

14.
锂硫电池是传统锂离子电池最有前途的替代品之一,多硫化物的溶解和导电性差是制约锂硫电池应用的两个重要因素。通过水热法合成了Fe2O3-还原氧化石墨烯(RGO)-碳纳米管(CNT)复合载硫材料,并通过调节氨水浓度,实现了复合材料中Fe2O3的颗粒尺寸的有效调控,发现小尺寸的Fe2O3颗粒具有更好的吸附和催化作用。合成的Fe2O3-RGO-CNT-S正极材料在1 C倍率下首次放电容量为1 286 mA·h/g,循环500圈后剩余718 mA·h/g,每圈的容量衰减率为0.08%。在0.2、0.5、1、2和4 C倍率下的平均比容量为983、825、769、673和604 mA·h/g,具有良好的倍率性能。在5 C倍率下循环500次仍剩余527 mA·h/g,具有良好的大电流循环性能。Fe2O3-RGO-CNT-S正极材料特别适用于高性能锂硫电池,具有优异的电化学性能主要是由于R...  相似文献   

15.
以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。  相似文献   

16.
通过机械球磨制备不同质量比的LCO/NCA混合正极材料,采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征其相结构和微观形貌,研究了这种材料的电化学性能。结果表明,两种正极材料球磨混合后其晶体结构均未改变,但是初始的NCA球形二次颗粒被打散,形成的纳米粒子弥散填充在LCO微米颗粒的孔隙之间,提高了正极材料的涂膜密度和二者之间的接触紧密性。当LCO:NCA=6:4时混合正极材料具有最佳的颗粒级配效果,其首次充放电效率最高,为92.4%;在10 C (1 C=140 mA·g-1)倍率下的比容量(136 mA·h·g-1)是0.2 C时的78.0%,出现了明显的协同增强效果;在1 C倍率下循环100次其容量保持率为89.8%,表现出优异的电化学性能。  相似文献   

17.
近年来,TiO2作为钠离子电池(NIB)负极材料,因其低成本和高稳定性等优势受到广泛关注。但受TiO2本征电子导电性的固有限制,使得TiO2作为NIB负极材料导电性较差,导致其容量和倍率等性能不理想。利用海藻酸钠与金属离子自主交联反应的特性,将反应产物在最佳温度下进行简单碳化,制备了具有分级多孔结构的TiO2/C复合材料,其中TiO2纳米颗粒均匀地分布在多孔互连的碳基体中,该结构提升了复合材料导电性的同时扩展了钠离子反应的附着位点。将TiO2/C复合材料用于NIB负极材料,在100 mA·g-1的电流密度下循环300圈后,电池可逆比容量维持在180.4 mAh·g-1;进一步,在更高的1000 mA·g-1电流密度下经过1000次循环后,电池可逆比容量维持在102.3 mAh·g-1,充分显示出TiO2/C复合材料作为NIB负极材料的应用潜能。  相似文献   

18.
通过水蒸气二氧化碳(H 2O(gas)-CO2)共活化的物理活化方法制备聚苯胺基活性碳被广泛应用于商业活性碳的规模化生产,相比于化学活化方法,该方法制备的活化产物无活化剂残留、清洗简单且工艺过程环保。以聚苯胺为原料,探究了H 2O(gas)的量和CO2分压对活化产物的影响。采用氮气吸/脱附、扫描电镜(SEM)、透射电镜(TEM)等表征手段系统研究了活性碳的孔径分布及孔道结构,采用电化学工作站研究了活性碳作为离子液体电容器电极材料的电化学性能。当H 2O(gas)和碳化产物的质量比为4∶1、CO2分压为0.6时,所制备活性碳的比表面积和孔体积可分别达到2357 m2·g-1和1.45 cm 3·g-1。该样品具有丰富的中孔和大孔结构,且中孔比表面积占总比表面积的比率约为40%。采用离子电解液时,该样品作为电容器的电极材料具有较高的容量,在0.1 A·g-1的电流密度下容量可达到203 F·g-1,并拥有优异的倍率性能以及良好的循环稳定性,在10000次循环(5 A·g-1)后具有91%的容量保持率。采用有机电解液时,其在1 A·g-1的电流密度下容量可达134 F·g-1,且在10 A·g-1的大电流密度下容量保持率达100%。该活性碳在离子电解液和有机电解液中均具有的优异电化学性能,可归因于其丰富的中孔和大孔结构极大地减少了离子迁移阻力,从而提升了其倍率性能和在离子电解液中的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号