首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
Stoichiometric mullite (71.38 wt% Al2O3-28.17 wt% SiO2) and 80 wt% Al2O3-20 wt% SiO2 gels were prepared by the single-phase and/or diphasic routes. Dense sintered bodies were prepared from both sets of gels in the Al2O3-SiO2 system. Apparent densities of 96% and 97% of theoretical density were measured for the diphasic (using two sols) mullite samples sintered at 1200° and 1300°C for 100 min, respectively; this compared with 85% and 94% for the single-phase xerogels under the same conditions, and to much lower values for mullite prepared from conventional mixed powders. The microstructure of the mullite pellets from diphasic xerogel precursors is also considerably finer.  相似文献   

2.
Zirconia-toughened mullite (SiC/ZTM) nanocomposites were prepared by a chemical precipitation method. The samples showed good sinterability and could be densified to >98.7% of the theoretical density at 1350°–1550°C. Because of the addition of mullite seeds in the starting powder and the pinning effects of ZrO2 and SiC particles on mullite grain growth, a fine-grained microstructure formed. Mullite grains were generally equiaxed for the sample sintered at 1400°C; whereas, for the sample sintered at 1550°C, most mullite grains took a needlelike morphology, and SiC particles were primarily located within mullite grains. The strength and toughness increased with the increasing sintering temperature, and reached their respective maximum of 780 MPa and 3.7 MPa·m1/2 for the sample sintered at 1550°C.  相似文献   

3.
Phase Transformation of Diphasic Aluminosilicate Gels   总被引:1,自引:0,他引:1  
Aluminosilicate gels with compositions Al2O2/SiO2 and 2 were prepared by gelling a mixture of colloidal pseudo-boehmite and a silica sol prepared from acid-hydrolyzed Si(OC2H5)4. Upon heating the pseudo-boehmite transforms to γ-Al2O3 around 400°C, then to δ-Al2O3 at 1050°C, and at 1200°C reacts with amorphous SiO2 to form mullite. Some twinned θ-Al2O3 forms before mullite. Nonstoichiometric specimens have a similar transformation sequence, but form mullite grains with inclusions of either Al2O3 or cristobalite, often associated with dislocation networks or micropores. Mullite grains are formed by nucleation and growth and have equiaxed shape.  相似文献   

4.
Diphasic gels with Al/Si atomic ratios of 6/1, 3.1/1, 3/1, 2/1, and 1/1 were used to study the effect of precursor composition on mullite formation process and the resulting microstructure. Mullite formation initiated at about 1300°C for all samples, with only some slight differences in temperatures. The mullite formation temperature was a minimum for an Al/Si ratio of 3.1/1 and increased as the Al/Si ratio of the gels increased or decreased. For the 6/1 gel, dissolution of alumina into mullite solid solution was observed after the initial mullite formation. The dissolution process was reversed above 1450°C with the formation of θ-Al2O3 and then α-Al2O3. Change of microstructures from equiaxed to elongated mullite grain structures was found within a narrow range of composition near the nominal Al/Si ratio of 3/1.  相似文献   

5.
Effects of the concentration of ZrOCl2, calcination temperature, heating rate, and the size of secondary particles after hydrolysis on the preparation of high-purity ZrSiO4 fine powders from ZrOCl2.8H 2 O (0.2 M to 1.7 M ) and equimolar colloidal SiO2 using sol–gel processing have been studied. Mechanical properties of the sintered ZrSiO4 from the high-purity ZrSiO4 powders have been also investigated. Single-phase ZrSiO4 fine powders were synthesized at 1300°C by forming ZrSiO4 precursors having a Zr–O–Si bond, which was found in all the hydrolysis solutions, and by controlling a secondary particle size after hydrolysis. The conversion rate of ZrSiO4 precursor gels to ZrSiO4 powders from concentrations other than 0.4 M ZrOCl2.8H2O increased when the heating rate was high, whereupon the crystallization of unreacted ZrO2 and SiO2 was depressed and the propagation and increase of ZrSiO4 nuclei in the gels were accelerated. The density of the ZrSiO4 sintered bodies, manufactured by firing the ZrSiO4 compacts at 1600° to 1700°C, was more than 95% of the theoretical density, and the grain size ranged around 2 to 4 μm. The mechanical strength was 320 MPa (room temperature to 1400°C), and the thermal shock resistance was superior to that of mullite and alumina, with fairly high stability at higher temperatures.  相似文献   

6.
Amorphous CeO2–ZrO2 gels were prepared by coprecipitation in ammonia solutions. The onset of crystallization of the gels, from calcining in air, was 420°C, while 200° to 250°C in the presence of water and organic solvents such as methanol and ethanol. The sintering behaviors of CeO2–ZrO2 powders were sensitive to the crystallizing conditions, since hard agglomerates formed when the precipitated gels were crystallized by normal calcination in air, whereas soft agglomerates formed when they were crystallized in water or organic solvents. CeO2–ZrO2 powders crystallized in methanol and water at 250°C were sintered to full theoretical density at 1150° and 1400°C, respectively, whereas that crystallized by calcination in air at 450°C was sintered to only 95.2% of theoretical density, even at 1500°C.  相似文献   

7.
The microstructural evolution of sintered mullite prepared from a premullite powder after thermal treatments at 1570°C was observwed by transmission electron microscopy and energy-dispersive X-ray microanalysis. The results show that there are grains with lower and higher contents of Al2O3 than that in stoichiometric mullite and small glassy-phase areas with the same composition as mullite; α-Al2O3 precipitates after samples are annealed.  相似文献   

8.
Fabrication and Properties of Low-Shrinkage Reaction-Bonded Mullite   总被引:1,自引:0,他引:1  
Mullite ceramics were fabricated according to the recently developed reaction-bonded Al2O3 (RBAO) technology. Green compacts consisting of mechanically alloyed Al, SiC, and Al2O3 were heat-treated in two steps. During the first hold at 1200°C, Al and SiC were oxidized to form Al2O3 and SiO2. On further heating, mullite was formed which then sintered during the second hold at 1550°C. All reactions involved in the process were associated with volume expansions that almost compensated for the shrinkage on sintering. Processing details and microstructure development are discussed. Reaction-bonded mullite ceramics exhibit high fracture strength, e.g., 290 MPa at a density of 97% of theoretical density.  相似文献   

9.
Mullite (3Al2O3·2SiO2) of stoichiometric composition was prepared by mixing boehmite sol and silica dispersion and gelling at a pH of 3. Complete mullitization takes place at or above 1300°C. Ultrafine mullite powder prepared by calcining gel at 1400°C and attrition milling could be sintered to >98% (theoretical density) at 1650°C for 1.5 h. The flexural strength of the sintered body at room temperature was 405 MPa and 350 MPa at 1300°C. Only traces of a secondary phase were observed along the grain boundary.  相似文献   

10.
Sintering and Mechanical Properties of Stoichiometric Mullite   总被引:3,自引:0,他引:3  
Stoichiometric mullite powder (3Al2O3·2SiO2) prepared by spray pyrolysis and sintered at 1650°C attained 95% of theoretical density. The flexural strength was 360 MPa at room temperature and decreased slightly at 1400°C. A fairly high KIc value (2.8 MN/m3/2) was obtained. These mechanical properties can be attributed to the highly homogeneous stoichiometric composition of the raw powder.  相似文献   

11.
NMR study of mullite precursors has shown that local arrangement of Al in samples synthesized by spray pyrolysis differs considerably from the one adopted by samples obtained by polymeric or colloidal routes. Aluminum is tetra- and pentahedrally coordinated in the first type of samples but is tetra- and octahedrally coordinated in the second ones. Segregation of SiO2 and Al2O3 is directly produced in colloidal preparation; however, this phenomenon occurs only in polymeric gels when they are heated between 980° and 1100°C. In polymeric samples, thermal treatment at ∼980°C produces the formation of γ-Al2O3. A similar treatment in spray-pyrolized powders gives directly 3:2 mullite. From these results, exothermic and expansive effects detected at ∼980°C were ascribed to changes in coordination of Al produced during the atomic rearrangement that accompanies formation of these two phases (γ-Al2O3 or mullite). Above 1200°C, incorporation of Si in the Al-rich phase induces the formation of 3:2 mullite in polymeric and colloidal samples.  相似文献   

12.
Noncrystalline aluminum silicate precursors MP1 and MP3 with different ratios of Al in tetrahedral ([4]A1), pentahedral ([5]A1), and octahedral ([6]A1) position were prepared from aluminum sec-butylate and tetraethoxysilane (Al/Si ratio: 3/1) making use of a slow and rapid hydrolysis process, respectively. The MP2 precursor was synthesized from aluminum sec-butylate and silicon tetrachloride (Al/Si ratio: 4/1) by rapid hydrolysis. All aluminum silicate gels were heat-treated to temperatures just prior to crystallization to mullite and γ-Al2O3, respectively (MP1 and MP3: 800°C; MP2: 300°C). Al K near-edge absorption spectra (XANES) of the mullite precursors and of several suitable crystalline reference materials were measured using monochromatic synchrotron radiation. The reference XANES spectra yielded a linear correlation between the energy position of the first inflection point of the white lines and the frequency of sixfold-coordinated Al ([6]A1) in the samples. A similar though less straightforward correlation seems to hold also for the white line intensities. From these findings, the actual [61]A1 frequencies for the mullite precursors under investigation were derived to be <10% (MP1), =30% (MP3), and =60% (MP2). The [6]A1 frequency distribution in the mullite precursors displays a trend similar to that determined by 27A1 NMR spectroscopy.  相似文献   

13.
A high-purity stoichiometric mullite precursor was obtained by hydrolysis of the alkoxides Al(OC3H7)3 and Si(OC2H2)4. Fully sintered mullite ceramics can be prepared from sol-gel powders by sintering them at 1600°C for 4 h in air with the addition of 15 to 20 Vol% ZrO2 or 1 to 3 mol% Y2O3 or both. Introduction of 1 to 3 mol% Y2O3 aids the retention of tetragonal ZrO2; the volume fraction of t -ZrO2 retained increases with increasing Y2O3 content. The maximum t -ZrO2 retained reaches 34% in a matrix of synthetic mullite with 3 mol% Y2O3, but most of this t -ZrO2 does not undergo stress-induced transformation during grinding.  相似文献   

14.
Submicrometer SiO2-Al2O3 powders with compositions of 46.5 to 76.6 wt% Al2O3 were prepared by hydrolysis of mixed alkoxides. Phase change, mullite composition, and particle size of powders with heating were analyzed by DTA, XRD, IR, BET, and TEM. As-produced amorphous powders partially transformed to mullite and Al-Si spinel at around 980°C. The compositions of mullite produced at 1400° and 1550°C were richer in Al2O3 than the compositions of stable mullite solid solutions predicted from the phase diagram of the SiO2-Al2O3 system. Particle size decreased with increasing Al2O3 content. The sintered densities depended upon the amount of SiO2-rich glassy phase formed during sintering and the green density expressed as a function of particle size.  相似文献   

15.
A fine, uniform A12O3-SiO2 powder was prepared by heterocoagulation of narrow Al2O3 and SiO2 powders. This composite powder was dispersed, compacted, and fired in air at 900° to 1580°C for 1 to 13 h. Full density was achieved at 1550°C with the formation of a mullite phase. Relative densities of 83% and 98% (0.3 μm grain size) were measured for samples sintered at 1200°C for 13 h and at 1400°C for 1 h, respectively.  相似文献   

16.
Microstructure, Microchemistry, and Flexural Strength of Mullite Ceramics   总被引:2,自引:0,他引:2  
The microstructure of mullite ceramics hot-pressed and sintered at different temperatures was studied using transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) with EDS, and electron probe microanalysis (EPMA). The specimens, consisting of stoichiometric mullite grains without glassy phase, are obtained by hot-pressing stoichiometric mullite powder at 1575°C for 1 h. Silica-rich glassy phases are observed using TEM at three-grain junctions of mullite grains in specimens heated at and above 1600°C. However, high-resolution transmission electron micrographs show no glassy phase at two-grain boundaries in all specimens. SEM with EDS analyses show that the average value of Al2O3 contents of mullite grains increases slightly with increasing temperature. These results are consistent with a published Al2O3–SiO2 phase diagram. The flexural strength of mullite specimens at room temperature depends on their microstructure, such as the grain size and grain size distribution of mullite grains. The strength is high at room temperature and up to 1200°C, and it decreases at and above 1350°C, irrespective of the presence of the glassy phase.  相似文献   

17.
High-quality alumina ceramics were fabricated by a hot pressing with MgO and SiO2 as additives using α-Al2O3-seeded nanocrystalline γ-Al2O3 powders as the raw material. Densification behavior, microstructure evolution, and mechanical properties of alumina were investigated from 1250°C to 1450°C. The seeded γ-Al2O3 sintered to 98% relative density at 1300°C. Obvious grain growth was observed at 1400°C and plate-like grains formed at 1450°C. For the 1350°C hot-pressed alumina ceramics, the grain boundary regions were generally clean. Spinel and mullite formed in the triple-grain junction regions. The bending strength and fracture toughness were 565 MPa and 4.5 MPa·m1/2, respectively. For the 1300°C sintered alumina ceramics, the corresponding values were 492 MPa and 4.9 MPa·m1/2.  相似文献   

18.
Sample disks prepared from Al2O3 (61 wt%), SiO2 (28 wt%), and Fe2O3(II wt%) powders were sintered at 1270° and 1440°C and then annealed between 1300° and 1670°C. The annealed samples consisted of mullite as the main compound with minor amounts of glass and sometimes magnetite. The iron content of the mullites decreases strongly from ∼ 10.5 wt% Fe2O3 at 1300°C to ∼ 2.5 wt% Fe2O3 at 1670°C. A complex temperature-controlled exsolution mechanism of iron from mullite is considered.  相似文献   

19.
The reaction kinetics for the formation of mullite (3Al2O3· 2SiO2) from sol-gel-derived aluminosilicate gels prepared under various hydrolysis conditions were studied using dynamic X-ray diffraction (DXRD) and differential thermal analysis (DTA). The DXRD experiments showed that the apparent single-phase gels aluminosilicate gels were not completely single-phase gels but a composite of a single-phase gel (which has molecular-scale mixing) and a diphasic gel (which has nanometer-scale mixing). Mullite formation from these composite gels exhibits a two-stage conversion, the first at about 980°C and the second at about 1220°C. Gels prepared by a slower hydrolysis rate tend to have a higher conversion after the first stage, therefore, better molecular-scale mixing. Simultaneous formation of Al-Si spinel and mullite was also observed at 980°C. This coincidence of mullite and spinel formation could explain some of the controversy in the literature concerning the 980°C thermal event.  相似文献   

20.
Reactions and Microstructure Development in Mullite Fibers   总被引:3,自引:0,他引:3  
Microstructural and compositional changes during heat treatment of sol–gel-derived mullite fibers with additions of 2 wt% B2O3, 2 wt% P2O5, 2 wt% Cr2O3, and (1 wt% P2O5+ 1 wt% Cr2O3) were compared with those of undoped mullite fibers. For all compositions the sequence of phase development was the crystallization of a spinel phase (†-Al2O3 or Al–Si spinel) from amorphous material, followed by the formation of mullite at higher temperatures. Differential thermal analysis showed that additions of B2O3 and P2O5 increased the temperature of spinel formation and that B2O3 significantly decreased the temperature of mullite formation. After 1 h at 1200°C, the size of mullite grains in fibers that contained B2O3 was less than 1000 Å the grains in fibers of other compositions were 6000 to 12000 Å. After 60 h at 1400°C, fibers modified with B2O3 had a grain size less than 2000 to 3000 Å the grains in fibers of other compositions were 6000 to 12000 Å. B2O3 was the most volatile additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号